THE LEAN HANDBOOK
Also available from ASQ Quality Press:

Lean Kaizen: A Simplified Approach to Process Improvements
George Alukal and Anthony Manos

The Certified Six Sigma Master Black Belt Handbook
T.M. Kubiak

Lean Six Sigma for the Public Sector: Leveraging Continuous Process Improvement to Build Better Governments
Brandon Cole

Lean Acres: A Tale of Strategic Innovation and Improvement in a Farm-iliar Setting
Jim Bowie

A Lean Guide to Transforming Healthcare: How to Implement Lean Principles in Hospitals, Medical Offices, Clinics, and Other Healthcare Organizations
Thomas G. Zidel

Lean Doctors: A Bold and Practical Guide to Using Lean Principles to Transform Healthcare Systems, One Doctor at a Time
Aneesh Suneja and Carolyn Suneja

Profitability with No Boundaries: Optimizing TOC and Lean-Six Sigma
Reza (Russ) M. Pirasteh and Robert E. Fox

The Logical Thinking Process: A Systems Approach to Complex Problem Solving
H. William Dettmer

The Executive Guide to Understanding and Implementing Lean Six Sigma: The Financial Impact
Robert M. Meisel, Steven J. Babb, Steven F. Marsh, and James P. Schlichting

The Certified Six Sigma Black Belt Handbook, Second Edition
T.M. Kubiak and Donald W. Benbow

Six Sigma for the New Millennium: A CSSBB Guidebook, Second Edition
Kim H. Pries

The Certified Six Sigma Green Belt Handbook
Roderick A. Munro, Matthew J. Maio, Mohamed B. Nawaz, Govindarajan Ramu, and Daniel J. Zrymiak

Lean ISO 9001: Adding Spark to your ISO 9001 QMS and Sustainability to your Lean Efforts
Mike Micklewright

Optimizing Student Learning: A Lean Systems Approach to Improving K-12 Education
Betty Ziskovsky and Joe Ziskovsky

Root Cause Analysis: Simplified Tools and Techniques, Second Edition
Bjorn Andersen and Tom Fagerhaug

Quality Function Deployment and Lean-Six Sigma Applications in Public Health
Grace L. Duffy, John W. Moran, and William J. Riley

To Jennifer, who puts up with all my antics. To Judy, who taught me her version of continuous improvement—“Do not rest on your laurels.” And to George, for supporting me and for helping me reach a higher level of accomplishment.

—Tony Manos

To my wife, Holly, and my kids, Austin and Miranda, who gave up their time with a husband and father to make this book possible, and whose continued support provides me strength to pursue my dreams.

—Chad Vincent
Table of Contents

List of Figures and Tables ... xi
Foreword ... xvii
Preface .. xix
Acknowledgments .. xxiii
A Brief History of the Lean Certification Body of Knowledge xxv
Special Dedication .. xxvii
Prologue .. xxix
Contributing Authors and Editors .. xxxi

Module 1 Cultural Enablers .. 1
1.1 Principles of Cultural Enablers .. 2
 1.1.1. Respect for the Individual 7
 1.1.2. Humility ... 8
References ... 10
1.2 Processes for Cultural Enablers 11
 1.2.1. Planning & Deployment .. 11
 1.2.2. Create a Sense of Urgency 13
 1.2.3. Modeling the Lean Principles, Values, Philosophies 15
 1.2.4. Message Deployment—Establishing Vision and Direction . 17
 1.2.5. Integrating Learning and Coaching 18
 1.2.6. People Development—Education, Training & Coaching .. 20
 1.2.7. Motivation, Empowerment & Involvement 21
 1.2.8. Environmental Systems ... 23
 1.2.9. Safety Systems ... 25
References ... 26
1.3 Cultural Enabler Techniques and Practices 27
 1.3.1. Cross Training .. 27
 1.3.2. Skills Assessment .. 29
 1.3.3. Instructional Goals ... 31
 1.3.4. On-the-Job Training ... 32
Table of Contents

1.3.5. Coaching & Mentoring ... 33
1.3.6. Leadership Development 36
1.3.7. Teamwork .. 38
1.3.8. Information Sharing (Yokoten) 41
1.3.9. Suggestion Systems .. 42
References .. 44

Module 2 Continuous Process Improvement 45

2.1 Principles of Continuous Process Improvement 47
2.1.1. Process Focus .. 47
2.1.2. Identification and Elimination of Barriers to Flow 50
2.1.3. Match Rate of Production to Level of Customer Demand—
Just-in-Time .. 61
2.1.4. Scientific Thinking .. 62
2.1.5. Jidoka ... 68
2.1.6. Integrate Improvement with Work 79
2.1.7. Seek Perfection ... 80
References .. 84

2.2 Continuous Process Improvement Systems 85
2.2.1. Visual Workplace ... 86
2.2.2. Lot Size Reduction .. 108
2.2.3. Load Leveling ... 110
2.2.4. 3P Production Process Preparation 115
2.2.5. Total Productive Maintenance (Including Predictive) 116
2.2.6. Standard Work ... 124
2.2.7. Built-in Feedback .. 130
2.2.8. Strategic Business Assessment 132
2.2.9. Continuous Improvement Process Methodology 135
2.2.10. Quality Systems .. 147
2.2.11. Corrective Action System 148
2.2.12. Project Management .. 151
2.2.13. Process Design ... 154
2.2.14. Pull System .. 160
2.2.15. Knowledge Transfer .. 163
References .. 165

2.3 Continuous Process Improvement Techniques & Practices 167
2.3.1. Work Flow Analysis ... 167
2.3.2. Data Collection and Presentation 186
2.3.3. Identify Root Cause ... 196
2.3.4. Presenting Variation Data 202
2.3.5. Product and Service Design 215
2.3.6. Organizing for Improvement 235
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3.7. Countermeasure Activities</td>
<td>240</td>
</tr>
<tr>
<td>2.3.8. Supply Processes External</td>
<td>261</td>
</tr>
<tr>
<td>2.3.9. Supply Processes Internal</td>
<td>269</td>
</tr>
<tr>
<td>References</td>
<td>276</td>
</tr>
<tr>
<td>Module 3 Consistent Lean Enterprise Culture</td>
<td>277</td>
</tr>
<tr>
<td>3.1 Principles of Consistent Lean Enterprise Culture</td>
<td>278</td>
</tr>
<tr>
<td>3.1.1. Systemic Thinking</td>
<td>278</td>
</tr>
<tr>
<td>3.1.2. Constancy of Purpose</td>
<td>285</td>
</tr>
<tr>
<td>3.1.3. Social Responsibility</td>
<td>289</td>
</tr>
<tr>
<td>References</td>
<td>289</td>
</tr>
<tr>
<td>3.2 Processes for Developing Consistent Lean Enterprise Culture</td>
<td>290</td>
</tr>
<tr>
<td>3.2.1. Enterprise Thinking</td>
<td>290</td>
</tr>
<tr>
<td>3.2.2. Policy Deployment/Strategy Deployment</td>
<td>298</td>
</tr>
<tr>
<td>References</td>
<td>306</td>
</tr>
<tr>
<td>3.3 Consistent Enterprise Culture Techniques & Practices</td>
<td>307</td>
</tr>
<tr>
<td>3.3.1. A3</td>
<td>307</td>
</tr>
<tr>
<td>3.3.2. Catchball</td>
<td>309</td>
</tr>
<tr>
<td>3.3.3. Redeployment of Resources</td>
<td>310</td>
</tr>
<tr>
<td>Module 4 Business Results</td>
<td>313</td>
</tr>
<tr>
<td>4.1 Principles of Business Results</td>
<td>314</td>
</tr>
<tr>
<td>4.1.1. Create Value First to Drive Performance</td>
<td>315</td>
</tr>
<tr>
<td>References</td>
<td>322</td>
</tr>
<tr>
<td>4.2 Measurement Systems</td>
<td>323</td>
</tr>
<tr>
<td>4.2.1. Measurement</td>
<td>323</td>
</tr>
<tr>
<td>4.2.2. Goal and Objective Setting</td>
<td>338</td>
</tr>
<tr>
<td>4.2.3. Analysis—Understand What Moves the Dial on Measures</td>
<td>342</td>
</tr>
<tr>
<td>4.2.4. Reporting</td>
<td>343</td>
</tr>
<tr>
<td>References</td>
<td>343</td>
</tr>
<tr>
<td>4.3 Key Lean Related Measures</td>
<td>344</td>
</tr>
<tr>
<td>4.3.1. Quality</td>
<td>345</td>
</tr>
<tr>
<td>4.3.2. Delivery</td>
<td>348</td>
</tr>
<tr>
<td>4.3.3. Cost</td>
<td>354</td>
</tr>
<tr>
<td>4.3.4. Financial Impact</td>
<td>371</td>
</tr>
<tr>
<td>4.3.5. Competitive Impact</td>
<td>373</td>
</tr>
<tr>
<td>References</td>
<td>378</td>
</tr>
<tr>
<td>Appendix A Lean Certification Body of Knowledge</td>
<td>379</td>
</tr>
</tbody>
</table>
Appendix B Recommended Reading for Lean Certification

<table>
<thead>
<tr>
<th>Reading</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exam Preparation</td>
<td>385</td>
</tr>
<tr>
<td>Lean Knowledge Certificate & Lean Bronze Certification Recommended</td>
<td>385</td>
</tr>
<tr>
<td>Lean Silver Certification Recommended Reading</td>
<td>385</td>
</tr>
<tr>
<td>Lean Gold Certification Recommended Reading</td>
<td>386</td>
</tr>
</tbody>
</table>

Appendix C Lean Glossary of Terms 387

Index 395
Module 1

<table>
<thead>
<tr>
<th>Figure 1.1-1</th>
<th>Empowered culture</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1.1.2-1</td>
<td>Level 5 Leadership—personal humility traits</td>
<td>9</td>
</tr>
<tr>
<td>Figure 1.2.1-1</td>
<td>Lean roadmap</td>
<td>11</td>
</tr>
<tr>
<td>Figure 1.2.1-2</td>
<td>Roadmap for transformation</td>
<td>13</td>
</tr>
<tr>
<td>Figure 1.2.4-1</td>
<td>Message alignment</td>
<td>17</td>
</tr>
<tr>
<td>Figure 1.2.7-1</td>
<td>The tactics of innovation</td>
<td>22</td>
</tr>
<tr>
<td>Figure 1.3.2-1</td>
<td>Skills matrix example</td>
<td>30</td>
</tr>
<tr>
<td>Figure 1.3.2-2</td>
<td>Skills training matrix competency levels</td>
<td>31</td>
</tr>
<tr>
<td>Table 1.3.5-1</td>
<td>Coaching and mentoring qualities</td>
<td>34</td>
</tr>
<tr>
<td>Table 1.3.5-2</td>
<td>Coaching and mentoring differences</td>
<td>36</td>
</tr>
<tr>
<td>Figure 1.3.7-1</td>
<td>Four phases of team building</td>
<td>38</td>
</tr>
<tr>
<td>Table 1.3.7-1</td>
<td>Teams versus groups</td>
<td>40</td>
</tr>
<tr>
<td>Figure 1.3.9-1</td>
<td>Idea board</td>
<td>43</td>
</tr>
</tbody>
</table>

Module 2

Figure 2.0-1	The Shingo Transformational Process	45
Figure 2.1.1-1	Lean mind-set and process versus results focus	48
Figure 2.1.2.2-1	Breakdown of the components of work	53
Figure 2.1.3-1	Ideal state of JIT processing	62
Figure 2.1.4.1-1	House of Toyota as illustrated by Liker	64
Figure 2.1.4.2-1	House of Gemba as illustrated by Imai	65
Figure 2.1.5-1	Components of autonomation	68
Figure 2.1.5.3-1	Example of conventional vs. man/machine separation layouts	74
Table 2.1.5.3-1	Four stages of man/machine separation	75
Figure 2.1.5.4-1	Example of conventional manufacturing to multi-process handling	76
Table 2.1.6-1	Integrated improvement at different organizational levels	79
Figure 2.1.7.1-1	Kaizen improvement vs. traditional improvement	81
Figure 2.1.7.2-1	Kaikaku without kaizen	83
Figure 2.1.7.2-2	Kaizen combined with kaikaku	83
Figure 2.2-1	Aligned vs. nonaligned organization	86
List of Figures and Tables

Figure 2.2.1-1 Visual device for showing status .. 88
Figure 2.2.1-2 Visual device for sharing work activities 88
Figure 2.2.1-3 Visual device for preventing defects ... 89
Figure 2.2.1-4 Visual device for providing ease of access 89
Figure 2.2.1-5 Floor bordering ... 90
Figure 2.2.1-6 Labeling pharmaceuticals in a pharmacy 91
Figure 2.2.1-7 Tooling sharpening visual workplace .. 91
Figure 2.2.1-8 Visual workplace for a scrap separator ... 92
Figure 2.2.1-9 Visual workplace at an airport ... 93
Figure 2.2.1-10 Airport without visual workplace .. 94
Figure 2.2.1-11 Fewer questions/More value add ... 95
Figure 2.2.1-12 Kindergarten classroom visual management 96
Figure 2.2.1-13 Stoplight colors green, yellow, and red indicate good, caution, and bad (red and green are used most commonly for status and volume indicators) .. 97
Figure 2.2.1-14 Example of an andon board ... 97
Figure 2.2.1-15 Common stacklight used in hospital environments 98
Figure 2.2.1-16 Visual control to manage work-in-process (parts) on a production line ... 98
Figure 2.2.1-17 Visual control to manage raw materials in a warehouse 99
Figure 2.2.1-18 Visual control to manage office supply inventory levels 99
Figure 2.2.1-19 Visual management of a welding operation and steel cutting process . 100
Figure 2.2.1-20 Resource management board to trigger the addition of an inspector and manual cleaning operation .. 100
Figure 2.2.1-21 File management at a doctor’s office .. 101
Figure 2.2.1-22 Color coding for inventory locations in a warehouse 101
Figure 2.2.1-23 Diagonal line identifying whether critical documents are missing ... 102
Figure 2.2.1-24 LOTO tool .. 102
Figure 2.2.1-25 LOTO station easily identifies where LOTO supplies are located and when they are missing .. 103
Figure 2.2.1-26 Examples of various safety signs ... 103
Table 2.2.1-1 Example of a production hour-by-hour chart 104
Table 2.2.1-1-1 The 5Ss ... 105
Figure 2.2.2-1 Customer demand showing peaks and valleys 109
Figure 2.2.3-1 Three components of production leveling 110
Figure 2.2.3-2 Production leveled for different time periods 111
Figure 2.2.3-3 Total volume is leveled, and product type volumes are variable 112
Figure 2.2.3-4 Total volume is leveled, and product type volumes are leveled over a time period .. 112
Figure 2.2.3-5 Inventory reduction with mixed model production 114
Figure 2.2.3-6 Example of a heijunka box ... 114
Figure 2.2.5-1 OEE waterfall chart ... 118
Figure 2.2.5-2 OEE loss categories .. 118
<table>
<thead>
<tr>
<th>Table/Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 2.2.5-1</td>
<td>The Six Big Losses of OEE.</td>
<td>119</td>
</tr>
<tr>
<td>Figure 2.2.5-3</td>
<td>The machine loss pyramid.</td>
<td>120</td>
</tr>
<tr>
<td>Table 2.2.5-2</td>
<td>Other lean tools implemented during the TPM process.</td>
<td>123</td>
</tr>
<tr>
<td>Table 2.2.6-1</td>
<td>Reasons for resistance to standard work.</td>
<td>125</td>
</tr>
<tr>
<td>Figure 2.2.6-1</td>
<td>Example of production (process) capacity chart.</td>
<td>127</td>
</tr>
<tr>
<td>Figure 2.2.6-2</td>
<td>Example of standardized work (operation) combination table.</td>
<td>128</td>
</tr>
<tr>
<td>Figure 2.2.6-3</td>
<td>Example of a standardized work analysis chart.</td>
<td>129</td>
</tr>
<tr>
<td>Figure 2.2.6-4</td>
<td>Example of a job element sheet.</td>
<td>130</td>
</tr>
<tr>
<td>Figure 2.2.7-1</td>
<td>A typical feedback loop.</td>
<td>131</td>
</tr>
<tr>
<td>Figure 2.2.8-1</td>
<td>Aligning organizational goals and operational measures.</td>
<td>134</td>
</tr>
<tr>
<td>Table 2.2.8-1</td>
<td>Measures useful for strategic and tactical business assessment.</td>
<td>135</td>
</tr>
<tr>
<td>Figure 2.2.9-1</td>
<td>Juran’s Quality Trilogy.</td>
<td>136</td>
</tr>
<tr>
<td>Figure 2.2.9-2</td>
<td>The concept of continuous improvement versus reengineering.</td>
<td>137</td>
</tr>
<tr>
<td>Figure 2.2.9.1-1</td>
<td>The PDCA cycle of improvement.</td>
<td>138</td>
</tr>
<tr>
<td>Figure 2.2.9.1-2</td>
<td>Ishikawa’s modified PDCA cycle of improvement.</td>
<td>139</td>
</tr>
<tr>
<td>Figure 2.2.9.1-3</td>
<td>Deming’s modified PDSA Cycle.</td>
<td>140</td>
</tr>
<tr>
<td>Table 2.2.9.1-1</td>
<td>Comparison of improvement methodologies.</td>
<td>140</td>
</tr>
<tr>
<td>Table 2.2.9.2-1</td>
<td>DMAIC methodology.</td>
<td>141</td>
</tr>
<tr>
<td>Figure 2.2.9.3-1</td>
<td>Examples of problem-solving storyboard based on DMAIC structure.</td>
<td>144</td>
</tr>
<tr>
<td>Figure 2.2.9.3-2</td>
<td>Simplified example of problem-solving storyboard (A3 format).</td>
<td>145</td>
</tr>
<tr>
<td>Figure 2.2.9.3-3</td>
<td>Example of a detailed A3 from Managing to Learn.</td>
<td>146</td>
</tr>
<tr>
<td>Figure 2.2.12-1</td>
<td>Example of a Gantt chart with visual management incorporated.</td>
<td>152</td>
</tr>
<tr>
<td>Figure 2.2.12-2</td>
<td>Example of a PERT chart.</td>
<td>153</td>
</tr>
<tr>
<td>Figure 2.2.13-1</td>
<td>SIPOC diagram.</td>
<td>155</td>
</tr>
<tr>
<td>Figure 2.2.13-2</td>
<td>SIPOC and the linking of processes.</td>
<td>155</td>
</tr>
<tr>
<td>Figure 2.2.13-3</td>
<td>Contributors to variation.</td>
<td>156</td>
</tr>
<tr>
<td>Figure 2.2.13-4</td>
<td>Prediction for a stable process based on standard deviation.</td>
<td>156</td>
</tr>
<tr>
<td>Table 2.2.13-1</td>
<td>Translation of process capability measure.</td>
<td>157</td>
</tr>
<tr>
<td>Table 2.2.13-2</td>
<td>Example of process capacity sheet.</td>
<td>158</td>
</tr>
<tr>
<td>Figure 2.2.13-5</td>
<td>Spaghetti diagram showing the flow of materials through an operation.</td>
<td>159</td>
</tr>
<tr>
<td>Figure 2.2.13-6</td>
<td>The organization as a series of processes working together to serve customers</td>
<td>160</td>
</tr>
<tr>
<td>Figure 2.2.14-1</td>
<td>Example of a supermarket pull system.</td>
<td>161</td>
</tr>
<tr>
<td>Figure 2.2.14-2</td>
<td>Example of a sequential pull system.</td>
<td>162</td>
</tr>
<tr>
<td>Figure 2.2.14-3</td>
<td>Example of a mixed pull system.</td>
<td>162</td>
</tr>
<tr>
<td>Table 2.2.15-1</td>
<td>Examples of knowledge waste.</td>
<td>165</td>
</tr>
<tr>
<td>Figure 2.3.1-1</td>
<td>Value stream map system broken down into processes and tasks.</td>
<td>168</td>
</tr>
<tr>
<td>Figure 2.3.1.1-1</td>
<td>High-level flowchart for a request-for-quote process.</td>
<td>169</td>
</tr>
<tr>
<td>Figure 2.3.1.1-2</td>
<td>Detail-level flowchart for a request-for-quote process.</td>
<td>170</td>
</tr>
<tr>
<td>Figure 2.3.1.2-1</td>
<td>Analytical process chart for a LEGO block manufacturing process.</td>
<td>173</td>
</tr>
</tbody>
</table>
Figure 2.3.1.2-2 Alternate example of an analytical process chart for a LEGO block manufacturing process .. 174
Figure 2.3.1.3-1 The process of value stream mapping .. 175
Figure 2.3.1.3-2 Example of a product family matrix 175
Figure 2.3.1.3-3 Basic structure of the value stream map 177
Figure 2.3.1.3-4 Value stream map components .. 178
Figure 2.3.1.3-5 Common value stream mapping icons 179
Figure 2.3.1.4-1 Takt time analysis of processes in a value stream 181
Table 2.3.1.4-1 Takt time analysis of services in an organization 181
Figure 2.3.1.4-2 Line balancing example: current state 182
Figure 2.3.1.4-3 Line balancing example: current state (bar chart format) 183
Figure 2.3.1.4-4 Line balancing example: future state option 1........................ 183
Figure 2.3.1.4-5 Line balancing example: future state option 1 (bar chart format) .. 184
Figure 2.3.1.4-6 Line balancing example: future state option 2........................ 184
Figure 2.3.1.4-7 Line balancing example: future state option 2 (bar chart format) .. 185
Figure 2.3.1.4-8 Line balancing example: current state (modified bar chart format) .. 185
Figure 2.3.1.4-9 Line balancing example: ideal state (modified bar chart format) .. 186
Figure 2.3.2.1-1 Histogram with a normal distribution 188
Figure 2.3.2.1-2 Histogram with negatively skewed data 189
Figure 2.3.2.1-3 Histogram with a bimodal distribution 189
Table 2.3.2.2-1 Example of a Pareto data table ... 192
Table 2.3.2.2-2 Example of a Pareto data table ... 192
Figure 2.3.2.3-1 Example Pareto chart .. 193
Table 2.3.2.3-1 Example of a check sheet for errors on an essay test 195
Figure 2.3.2.3-1 Example of a check sheet (pictogram) of rust location occurrences on a car door at a service center .. 195
Figure 2.3.3.1-1 Example of a CE (fishbone) diagram with Toyota’s 4 Ms 197
Table 2.3.3.2-1 Example of 5-Whys .. 199
Table 2.3.3.3-1 Steps to construct an FMEA ... 201
Figure 2.3.3.3-1 Example of a process FMEA .. 203
Table 2.3.4-1 Examples of various analysis tools compared with variation and audience types ... 204
Figure 2.3.4.1-1 Common causes versus special causes 205
Figure 2.3.4.1-2 Special causes mapping .. 206
Figure 2.3.4.1-3 Example of X bar-R chart .. 207
Figure 2.3.4.1-4 CTQ tree .. 208
Figure 2.3.4.2-1 Example of a scatter diagram .. 210
Table 2.3.4.2-1 Scatter diagram data ... 211
Figure 2.3.4.2-2 Correlation examples from a scatter diagram 211
Figure 2.3.4.2-3 Example of a concentration diagram 213
Figure 2.3.4.2-4 Example of the 1040EZ tax form showing where certain types of documentation errors occur ... 214
Figure 2.3.5-1 Product development life cycle showing concurrent engineering versus traditional engineering ... 216
Figure 2.3.5-2 Fewer design changes and reduced product development time for the Japanese automobile ... 216
Figure 2.3.5-1 House of Quality .. 219
Figure 2.3.5-2 Sequence of QFD matrices for product, part, and process planning ... 221
Figure 2.3.5-3 Example of a simplified QFD matrix for a car door. ... 222
Figure 2.3.5-4 Breakthrough improvement ... 224
Figure 2.3.5-4 Product life cycle .. 225
Figure 2.3.5-5 Effect of C_p against specification limits 232
Table 2.3.5-1 Correlation of C_p with sigma levels ... 232
Figure 2.3.5-5 Quality loss function .. 233
Figure 2.3.6-1 Kaizen in 10 steps ... 238
Figure 2.3.7-1 Example of a prevent device for poka-yoke. 243
Figure 2.3.7-1 Example of a detect device for poka-yoke. ... 244
Figure 2.3.7-2 Breakdown of typical changeover time components ... 245
Figure 2.3.7-2 Four steps to reducing setups ... 246
Figure 2.3.7-3 Simplified printed circuit board population process flow 247
Figure 2.3.7-4 Suggested right-sized equipment process flow 249
Figure 2.3.7-4 "Process at a glance" sheet ... 250
Table 2.3.7-4 Example of right-sized equipment criteria for selection 251
Figure 2.3.7-5 Example of part-quantity-process chart ... 253
Figure 2.3.7-5 Example of a U-shaped cell layout ... 254
Figure 2.3.7-5 Photo of a U-shaped cell layout ... 254
Figure 2.3.7-5 Example of a production output chart ... 255
Figure 2.3.7-7 Example of production and withdrawal kanbans ... 258
Figure 2.3.8-1 Traditional supply chain ... 262
Figure 2.3.8-1 Example of supplier managed inventory ... 263
Figure 2.3.8-1 Example of supplier managed inventory based on customer pitch ... 264
Figure 2.3.8-2 Example of cross-docking ... 274
Figure 2.3.8-2 Midpoint order picking method ... 274
Figure 2.3.8-2 Largest gap order picking method ... 275

Module 3
Figure 3.1.1-1 Management focus—traditional thinking versus systems thinking 279
Figure 3.1.1-1 The systems-thinking organization ... 280
Figure 3.1.1-3 Deming PDCA wheel ... 283
Figure 3.1.1-3 Leader standard work keeps the improvement loop closed 284
Table 3.1.2-1 Purpose statement examples 286
Figure 3.2.1-1 Enterprise thinking—organizational structure, spirit, and focus diagram 291
Figure 3.2.1.1-1 Office cells .. 293
Table 3.2.1.2-1 Box score example ... 294
Table 3.2.1.4-1 Costing ... 296
Figure 3.2.1.4-1 Example of center for excellence 297
Table 3.2.1.5-1 Methods to create a strategic direction 298
Figure 3.2.2.5-1 X-matrix example .. 303
Table 3.2.2-1 Methods to create a strategic direction 298
Figure 3.2.2.6-1 Communication plan example. 305
Figure 3.3.1-1 Sample A3 format. .. 308
Figure 3.3.1-2 Sample A3 for knowledge capture 308
Figure 3.3.1-3 Sample A3 for VOC with Instructions to complete 309
Figure 3.3.3-1 Cross-training matrix ... 312

Module 4

Table 4.2.1.5-1	Operational performance measure linkages 330
Figure 4.2.1.5-1	Box score example .. 332
Figure 4.2.1.6-1	VOC and VOP ... 335
Table 4.2.1.6-1	Examples of VOC in lean applications 337
Figure 4.2.1.6-2	PDSA for VOC ... 338
Table 4.2.2-1	Example of goal with associated objectives 339
Figure 4.2.2-1	PDCA and goals ... 340
Figure 4.3.2.2-1	Takt time–process cycle time chart .. 352
Table 4.3.2.2-1	Overproduction or bottleneck .. 353
Figure 4.3.3.4-1	A visual representation of OEE ... 362
Table 4.3.3.4-1	OEE by shift comparison .. 364
Table 4.3.3.4-2	Average method of calculating value stream OEE 365
Table 4.3.3.4-3	Weighted average method of calculating value stream OEE 365
Table 4.3.3.4-4	The Six Big Losses ... 366
Table 4.3.3.4-5	Overall labor efficiency definitions .. 367
Table 4.3.3.4-6	OLE example .. 368
Table 4.3.3.5-1	Example: customer demand of the assembly process for a single week .. 370
Table 4.3.3.5-2	Example: total daily changeover time per day after standard scheduling .. 370
Table 4.3.3.5-3	Example: changeover times .. 370
Table 4.3.3.5-4	Example: level schedule .. 371
Table 4.3.4.1-1	Lean measures associated with cash flow 372
Foreword

Robert D. Miller
Executive Director
The Shingo Prize for Operational Excellence
Jon M. Huntsman School of Business
Utah State University

The Lean Handbook is a terrific compilation of sections written by practitioners who bring their individual and unique experience and expertise to this body of knowledge. I appreciate the connections made with many of the dimensions and principles identified in the Shingo model. We must each be on a journey of continuous improvement, which means we must be constantly looking for new perspectives and approaches to bring about personal and organizational improvement.

Anthony Manos is correct when he says that the most difficult and yet important work we will do with lean is to change the culture of the organization. For lean to be successful, the many tools outlined in this handbook must be supplemented with an equally devoted effort to influence the mind-sets and behaviors of people in the organization. At the Shingo Prize we have learned that the best way to do this is to, as Stephen Covey would say, “begin with the end in mind.” In other words, while you are learning to use these great tools, you must also keep the deeper meaning, or the “why” behind the tools, very clear. The Lean Handbook can help each of us act our way into a new way of thinking, and then think our way into a new way of acting. By putting the wisdom of this handbook to work every day by every person and never taking your eyes off the prize—a new culture that is deeply embedded in the principles of lean—we will greatly increase the odds of a sustainable business transformation.

As you put this work into practice, you will recognize the shifting roles of leaders and managers in your organization. It is not enough for leaders to just keep doing what they have always done, nor is it enough for them to merely support the work of others. Rather, leaders must lead the cultural transformation and build the principles behind all of these great tools into the mind-sets of their associates. Similarly, managers have to do more than participate in kaizen teams. The emerging role of managers is to focus on designing, aligning, and improving the systems of the business so that they drive ideal behaviors that cause people to change their thinking of what excellence really looks like.

Using The Lean Handbook as a roadmap will no doubt be a powerful tool in helping you avoid many of the mistakes made by others over the years. I invite you to visit http://www.shingoprize.org to see how the key points illustrated here support the Shingo model for operational excellence. My thanks to all of the contributing authors!
Welcome to the Lean Handbook

What a remarkable journey this has been. Working on this book has been a terrific experience. We have had the great pleasure of working with a number of wonderful and giving individuals. Lean practitioners are truly an amazing and unique family. The energy and willingness of the individuals who helped create this book are evidence of the great profession and network of people of which we take part. So many different points of view and applications of knowledge made for great discussions, contemplation, and collaboration. With so much knowledge and understanding, it was difficult to find a point at which to stop talking and start putting these discussions on paper. In the end, we believe this book embodies the Lean Body of Knowledge (BOK) in a way that is much like the lean journey—ever evolving and always adaptable.

Lean has been a culmination of multiple individuals, philosophies, systems, tools, and applications throughout history. The challenge has been that all these different contributions are found in different places, called different things, and applied in different manners—making it difficult for the lean practitioner to gain an understanding of lean at a level of its full body of knowledge without great effort, research, experience, and networking. While this book is not a substitute for the effort, research, experience, and networking every seasoned lean practitioner goes through, we hope it provides a sound starting point for those just beginning or expanding their knowledge of lean.

Not an Exam Preparation Manual

First and foremost, this book is not a Lean Certification exam preparation manual. The Lean Bronze Certification exam questions are based on material from the five recommended reading books (see Appendix B, “Recommended Reading List for Lean Certification Exam Preparation”):

- Learning to See
- Lean Thinking
- Gemba Kaizen
- Lean Production Simplified
- Lean Hospitals

Preface
Make no mistake—this book takes nothing away from the great lean works that have preceded it. As a matter of fact, we believe that this book complements and pays tribute to those works as being pieces of the larger Lean BOK. But that is exactly what they are—pieces. Our intent was to put these pieces together in a manner to provide a higher-level overview of the Lean BOK. We realized early on in the project that this task was not something we could do alone.

This handbook’s intention is to gather information related to the Lean BOK (see Appendix A, “Lean Certification Body of Knowledge”) into one source. This book will enhance your understanding of the BOK as a whole and give you a more holistic look at lean. As great as the five recommended reading books are, they were not written with the intent of covering all aspects of the Lean BOK individually. Additionally, this book does not rehash the content of the five recommended reading books. What we have done is put together a book whose sole purpose is to embody the entire Lean BOK, section by section. This book is, by design, written at the Bronze Level for certification knowledge. This means that the weightings used in the Lean BOK for the Bronze Certification were considered for the depth and breadth of material considered for each rubric. Therefore, it is by no means all inclusive of every principle, system, and tool at every level of application related to lean.

By addressing the Lean BOK at the Bronze Level, this book provides a basic understanding of the lean principles, systems, and tools at a tactical level to drive improvements with measurable results. The intent is to revise the book over time to encompass the topics of the Silver Level (an integrated application on value stream transformations for lean leaders) and the Gold Level (for strategic application of lean across the entire enterprise, with emphasis on assets, systems, processes, and people). Therefore, this book, much like a lean journey in an organization, will be adapted as the Lean BOK evolves and more knowledge is integrated.

Given that the intent of this book is not to rehash the certification reference books, we hope that this book serves as a good starting point for those practitioners who want a holistic view of the Lean BOK, with links to many other lean references for greater detail and understanding. While there are many references, we tried to stay true to the terminology and applications discussed in the core books of the certification reading list.

One of the difficulties we faced in creating a book of this magnitude was how to structure it. While we could have structured it alphabetically by topic, organized it by case studies or by organizations, or arranged it by some other method, we wanted to stay true to the Lean BOK structure. While this structure does not allow for a nice flow from one topic to another for easier reading, the writing conforms to the Lean BOK and the Shingo Prize model. We thought that this would provide a traceable reference for those individuals and organizations utilizing those structures for the pursuit of operational excellence.

When lean is applied in an organization, the knowledge of the processes and the generation of ideas do not come from the organization’s designated lean experts. They come from those who perform the work on a daily basis. We took the same approach with this book. It would have been easy for us to read all the books and then pull information from those books to create another book. But then it would have been just that—another book. We needed to take a lean approach with this book. So, just as you would create a team of individuals who perform the
work in a kaizen event, we assembled a team of individuals who perform the work and who apply lean in their organizations every day.

MANY VOICES AND MANY STYLES

We were lucky to have some of the best minds in lean contribute to this endeavor (see “Contributing Authors and Editors”). There are many voices, many contributors, many styles of writing, and more than one point of view. The contributing authors come from many different backgrounds. Such different life experiences weave a wonderful lean tapestry. This book is not just lean for manufacturing—or lean for service or lean for healthcare. The examples given in this book can fit any type of organization. We hope you find these different points of view helpful while finding your voice in lean.

It has been a pleasure to not only be authors and share our knowledge of lean but also be editors and work closely with others like us. The great thing about working with all these individuals was learning how they apply the same things we apply, but maybe just a little differently. These differences provided us a different perspective on our version of lean and were wonderful opportunities to expand our personal lean knowledge base.

Coming together is a beginning. Keeping together is progress. Working together is success.

—Henry Ford

We wish you the best of luck and fair weather on your lean journey!
Acknowledgments

It would be nearly impossible to mention everyone who had an influence on the creation of this lean handbook, but we would like to make a few special mentions.

First and foremost we would like to thank all the contributing authors, who worked tirelessly to help construct and shape this handbook. Their willingness to share their knowledge and experience was exceptional. To learn more about these extraordinary lean thinkers, see “Contributing Authors.” A special acknowledgment goes to all the people and organizations that the contributing authors and editors have worked with over the years to help develop and deepen our understanding of lean and influence us as we continue to learn more.

This handbook would not have been possible without the support of the Lean Enterprise Division (LED) of the American Society for Quality (ASQ) and the LED Leadership Team—Kiami Rogers (chair), Frank Murdock (chair-elect), and Tammy Miller (secretary). We would also like to thank George Alukal, founding member of the LED and the driving force behind lean’s becoming an integral part of ASQ and a resource for its members.

The Lean Certification is supported by the four alliance partners: the Society of Manufacturing Engineers (http://www.sme.org), the Association for Manufacturing Excellence (http://www.ame.org), the Shingo Prize (http://www.shingo-prize.org), and of course ASQ (http://www.asq.org).

We would like to thank Kris Nasiatka from the Society of Manufacturing Engineers (SME) for all her efforts in creating the Lean Certification and for her continued support of the partner organizations and this lean handbook. Also from SME, Kelly Lacroix leads the Lean Certification Oversight and Appeals Committee, which continually monitors and improves the certification process.

If it wasn’t for our friends Matt Meinholz and Paul O’Mara at ASQ Quality Press, this book never would have been completed. We appreciate their patience and advice while working on this endeavor.

Last, but not least, we would like to give our utmost gratitude to Robert Damelio. As a member volunteer, Robert not only was the driving force behind ASQ’s LED adopting the Lean BOK, but he also guided the certification initiative at ASQ. Without his tireless efforts, ASQ would not have been a partner member of the Lean Certification.
HOW IT STARTED

The publication of *The Machine that Changed the World*, in 1990, brought the concept of lean to the masses. It also provided opportunities for many different flavors of lean to be born. With that came a myriad of education, training, and consulting practices, each bringing its own version of lean to the market.

In 2001, members of the Society of Manufacturing Engineers (SME) and the Association for Manufacturing Excellence (AME), and constituents of the Shingo Prize came together and determined that some type of validation for professional practice of lean was necessary. There was a need to align practitioners with a common foundation (fundamentals) of lean practice and, more importantly, provide a roadmap to support workforce development and training efforts. After a few stops and starts, development was under way in earnest in 2004.

The parties involved agreed that the Shingo Prize model should serve as the basis for the program’s Body of Knowledge (BOK). The initial BOK went deeply into evaluating lean practitioners’ job tasks. The model was modified to make it applicable to people and workforce development efforts versus being a corporate lean transformation model. The proposed Lean BOK was validated in a study in early 2005, thus launching version 2.0.

KAIZEN BLITZ WEEK

Shortly after version 2.0 was launched, a core development committee was established. With the preliminary validation of the BOK in place, a straw man for program components was outlined. SME hosted a “blitz week” to expedite development of the program. Nearly 60 lean practitioners, representing a breadth of manufacturing industries, consulting practices, and academia, gathered for a week to develop the components of this new certification program. During the blitz, development teams were established to focus on exams, portfolios, and the mentoring requirements for this new program. Throughout the entire development process, nearly 200 lean practitioners were involved in the creation of this program not including the couple of thousands that participated in the study.

The first Bronze exam was offered to the public in March 2006. The Silver exam was available in June 2006, and the Gold exam was launched in December of that year. The formal Lean Certification Oversight and Appeals Committee was established and met for the first time in March 2006.
UPDATED VERSION OF THE BOK

With the program “live” for a year, a second BOK validation study was conducted. It was desired to structure the certification BOK similar to the Shingo Prize model. The Shingo Prize was restructuring its model, which created an opportunity for the certification program to validate proposed changes to the BOK received by certification candidates as well as the oversight body.

The validation study was completed in 2007. The Lean Certification Oversight and Appeals Committee used the findings to restructure the BOK and launched version 3.0 in 2008 (see Appendix A). Although the topics did not change, the BOK was reorganized for better flow and improved alignment of topics within each category. Each BOK validation study is structured in a way that derives a weighting factor for each section of the BOK. The weighting factors identify the percentage of exam coverage for each BOK area and help the committee identify priority areas for building the exam bank.

THE FUTURE OF THE BOK

Validation studies will be conducted every five to seven years. The studies are intended to verify that current topics are still relevant in contemporary practice of lean and to identify any new or emerging topics that should be added to the BOK.
Special Dedication

Kiami Rogers
Chairperson, ASQ Lean Enterprise Division

This handbook is dedicated in loving memory to Wayne Paupst (1957–2010), past chairman of the Lean Enterprise Division (LED). In August 2010, Wayne lost a long battle with cancer. Wayne was a quality professional’s “quality professional.” He never complained about his condition. In fact, many of us on the Leadership Team, which worked closely with Wayne, were not even aware of the severity of his condition. Wayne possessed a wonderful sense of humor and had a kind word for everyone. He was always ready with a joke, and always ready to laugh at jokes offered by others. His leadership, instruction, kindness, and humor will be missed by family and friends as well as organizations such as ASQ.

I first met Wayne at a meeting of the founders of the LED prior to the LED becoming a forum and subsequently a division. Wayne had been a member of ASQ since 1988. He had more than 25 years in the quality profession, holding positions such as quality engineer, quality systems coordinator, inspector, and quality assurance manager. He had been instructing certification courses for the Lehigh Valley Section of ASQ since 1996 and also had provided instructional courses for many of the top companies in the Lehigh Valley as well. Wayne also held several ASQ certifications: Six Sigma Black Belt, Quality Engineer, Quality Manager, Quality Auditor, Quality Technician, Quality Inspector, Process Analyst, and Quality Improvement Associate. It was during Wayne’s tenure as LED division chair that ASQ introduced the Lean Certification, in partnership with SME, AME, and the Shingo Prize organizations. I have no doubt that Wayne would have pursued obtaining the ASQ Lean Certification himself, as well as teaching and mentoring other lean professionals pursuing this certification. It is with great honor that we dedicate this handbook to Wayne.
The purpose of this handbook is to provide a reference guide for lean principles and methods. This handbook on its own is not intended to prepare one for the ASQ Lean Certification (in partnership with SME, AME, and the Shingo Prize organizations). The user of this handbook is a lean professional who has some knowledge of and experience with lean principles and methods. Material from several lean practitioners with differing levels of disclosure of their experiences has been gathered to create this handbook and has been edited to be presented in a consistent and unified format.

With 6000 members worldwide, the ASQ Lean Enterprise Division (LED) is a global network of professionals helping individuals and organizations apply proven and leading-edge lean principles and practices to achieve dramatic results for personal and organizational success. Whether or not you are a member of the ASQ LED, we hope you find this handbook a useful guide in your lean journey.

Prologue
Kiami Rogers
Chairperson, ASQ Lean Enterprise Division
This handbook was a large collaborative effort, and we would especially like to thank all the contributing authors, who shared their time and wisdom to help make this endeavor possible.

CONTRIBUTING AUTHORS

Christopher Abrey is a program manager with Northstar Aerospace in Bedford Park, Illinois. He earned a bachelor of engineering in manufacturing systems engineering from Coventry University, UK. He is a senior member of the Society of Manufacturing Engineers (SME) and a member of the Association of Manufacturing Excellence (AME). Christopher has more than 20 years of lean experience in manufacturing and recently completed the Lean Bronze Certification. He can be reached at cabrey@nsaero.com.

Section

2.2.5. Total Productive Maintenance (including predictive)

Andy Carlino is cofounder and partner of the Lean Learning Center. In addition to over 20 years’ experience in real-world senior management, including president and COO, he has for the past 20 years been providing consulting, training, and coaching services from the boardroom to the shop floor to organizations across the globe. He has published numerous articles and is coauthor of The Hitchhiker’s Guide to Lean: Lessons from the Road. Andy is a frequent speaker for a variety of professional organizations and corporate conferences, including guest speaker for Clemson and Harvard University. He holds a BS in engineering and a BA in psychology and is a member of SME, SAE, AME, ASQ, and numerous other industry and professional associations.

Sections

1.2.1. Planning & Deployment
1.2.2. Create a Sense of Urgency
1.2.3. Modeling the Lean Principles, Values, Philosophies
1.2.7. Motivation, Empowerment & Involvement
Adil Dalal is CEO of Pinnacle Process Solutions, Intl.; a keynote speaker; thought leader in lean, project management, and leadership; and author of *The 12 Pillars of Project Excellence: A Lean Approach to Improving Project Results*. He has earned MS degrees in engineering management and mechanical engineering. He is a Certified Lean Bronze Professional, Certified Quality Engineer (CQE), Project Management Professional (PMP), and Board Certified Executive Coach. He is the chair of ASQ’s Human Development & Leadership Division, and certification chair of the Lean Enterprise Division. He served on the Lean Certification Oversight and Appeals Committee. He can be reached at adil@pinnacleprocess.com.

Sections

1. Cultural Enablers
 1.1. Principles of Cultural Enablers
 1.1.1. Respect for the Individual
 4.3.5. Competitive Impact

Grace Duffy is president of Management and Performance Systems. She holds an MBA from Georgia State University and has coauthored numerous books: *The Quality Improvement Handbook*, *Executive Guide to Improvement and Change*, *Executive Focus: Your Life and Career*, *The Public Health Quality Improvement Handbook*, *QFD and Lean Six Sigma for Public Health*, *Modular Kaizen: Dealing with Disruption*, and *Tools and Applications for Starting and Sustaining Healthy Teams*. She is an ASQ Certified Manager of Quality/Organizational Excellence (CMQ/OE), Improvement Associate, Auditor, Lean Six Sigma Master Black Belt (LSS MBB), and ASQ Fellow.

Section

2.2.8. Strategic Business Assessment

David S. Foxx is a senior manager and Champion of the Continuous Process Improvement Community of Practice at Deloitte Consulting. He earned an MBA at the University of Phoenix and a bachelor of science in industrial engineering at the University of Texas at El Paso. David is a leader in enterprise transformation and specializes in innovation, product, process, and service design. David presented “Total Quality Design—An Imperative for Survival” at the Annual Quality Congress. He is a senior member of ASQ and a member of the ASQ Quality Press Standing Review Board, the Institute of Industrial Engineers (IIE), and the International Society of Six Sigma Professionals (ISSSP). His certifications include ASQ Certified Six Sigma Black Belt (CSSBB), LSS MBB, Lean Master, and Design and Innovation Master Black Belt. He can be reached at sixsigmalean@aol.com.

Sections

2.1.2.2. 7 Wastes (Muda), Fluctuation (Mura), and Overburden (Muri)
2.3.5. Product and Service Design
2.3.5.1. Concurrent Engineering
2.3.5.2. Quality Function Deployment
2.3.5.3. Product or Process Benchmarking
2.3.5.4. Design for Product Life Cycle (DFx)—Cradle to Cradle
2.3.5.5. Variety Reduction—Product and Component
2.3.5.6. Design for Manufacturability
4.3.2. Delivery
4.3.2.1. Takt Time
4.3.2.2. Cycle Time
4.3.2.3. Lead Time

Dr. Gwendolyn Galsworth is president and founder of Visual Thinking, a training, research, and consulting firm, and the VTI/Visual-Lean Institute, which offers licensing and train-the-trainer in nine core visual workplace courses. Over some 30 years of hands-on implementations, Gwendolyn has nearly single-handedly created the models, concepts, and methods of workplace visuality that define visual’s distinct and powerful contribution to enterprise excellence—and to sustainable cultural and bottom-line results. Gwendolyn serves as a Shingo Prize examiner. She is the author of Visual Systems: Harnessing the Power of the Visual Workplace; Smart, Simple Design: Using Variety Effectiveness to Reduce Total Cost and Maximize Customer Selection; two Shingo award-winning books, Visual Workplace, Visual Thinking: Creating Enterprise Excellence through the Technologies of the Visual Workplace and Work That Makes Sense; and many DVDs. She can be reached at gwendolyn@visualworkplace.com.

Section
2.2.1. Visual Workplace

Bruce Hamilton is president of the Greater Boston Manufacturing Partnership, headquartered at the University of Massachusetts Boston campus. He attended Bowdoin College and earned a BA from the University of Arizona. Bruce is the creator of Toast Katzen and other lean training videos, and also coauthor with Pat Wardwell of the e² Continuous Improvement System Manual. He posts weekly to his blog: http://www.oldleandude.org. Both a recipient of the Shingo Prize and an inductee into the Shingo Prize Academy, Bruce is also a Shingo Prize examiner and a member of the Shingo Prize Board of Governors. He can be reached at pokayoke@comcast.net.

Sections (with Pat Wardwell)
2.1.2. Identification & Elimination of Barriers to Flow
2.1.2.1. Flow & the Economies of Flow
2.1.2.3. Connect & Align Value Added Work Fragments
2.1.2.4. Organize around Flow
2.1.2.5. Make End-to-End Flow Visible
2.1.2.6. Manage the Flow Visually
2.3.7.1. Mistake and Error Proofing (Poka Yoke)
2.3.7.4. Right Sized Equipment
2.3.7.5. Cellular Flow

John Kendrick is a principal with Fujitsu in Sunnyvale, California, and has more than 15 years of lean experience in manufacturing, finance, telecommunications, and healthcare. John holds a master of engineering degree in simulation and modeling from Arizona State University, a master of applied statistics from Penn State, and a master of business administration in finance from the University of Pittsburgh. He is a Certified Six Sigma Master Black Belt (CSS MBB) and a senior member of ASQ. He is also a CSSBB, Certified Reliability Engineer (CRE), Certified Software Quality Engineer (CSQE), and CMQ/OE and holds two Lean Certifications.

Sections

2.3.1. Work Flow Analysis
 2.3.1.1. Flowcharting
 2.3.1.2. Flow Analysis Charts
 2.3.1.3. Value Stream Mapping
 2.3.1.4. Takt Time Analysis
 4.2.1. Measurement
 4.2.1.1. Understand Interdependencies between Measures and Measurement Categories
 4.2.1.2. Align Internal Measures with What Matters to Customers
 4.2.1.3. Measure the Results from the “Whole” System
 4.2.1.4. Measure Flow and Waste
 4.2.3. Analysis—Understand What Moves the Dial on Measures
 4.2.4. Reporting
 4.2.4.1. Visible Feedback Real-Time

Matthew Maio is a quality manager at Raytheon IDS in White Sands, New Mexico. He earned bachelor’s degrees in business and computer science from the College of Santa Fe, New Mexico. He is the author of *Quality Improvement Made Simple . . . and Fast!* and coauthor of *The Six Sigma Green Belt Handbook* (both from ASQ Quality Press). Matthew is a member of the International Test and Evaluation Association and the Directed Energy Professionals Society. He is a senior member of ASQ and past regional director (board member) and section chair of ASQ. He holds ASQ certification as a CQM/OE, CSSBB, Certified Six Sigma Green Belt (CSSGB),
CSQE, and Certified Quality Auditor (CQA) and Defense Acquisition University Lean Six Sigma Yellow Belt (LSSYB) and Process Quality Management (PQM) certification/recognition. He can be reached at Matt_Maio@comcast.net.

Sections
1.2.4. Message Deployment—Establishing Vision and Direction
1.2.5. Integrating Learning and Coaching
1.2.6. People Development—Education, Training & Coaching
1.2.8. Environmental Systems
1.2.9. Safety Systems
2.1.5.1. Quality at the Source
2.1.5.4. Multi-Process Handling
2.2.6. Standard Work
2.2.7. Built-in Feedback
2.2.15. Knowledge Transfer
2.3.7.3. One Piece Flow
2.3.7.4. Right Sized Equipment
2.3.7.6. Sensible Automation
2.3.7.8. Source Inspection

David Mann is principal at David Mann Lean Consulting. He is the Shingo Prize–winning author of Creating a Lean Culture: Tools to Sustain Lean Conversions (Productivity Press). David serves on the editorial board of AME’s publication, Target, on the management science faculty at the Fischer College of Business at Ohio State University, and as a Shingo Prize examiner. He earned his PhD in psychology from the University of Michigan. He can be reached at dmann@dmannlean.com.

Sections
2.1.1. Process Focus
3.1.1.3. Closed-Loop Thinking to Assure Effective Feedback of Organizational Learning

Anthony Manos is a catalyst with Profero and lean champion at 5S Supply in Frankfort, Illinois. He earned an MBA in entrepreneurial studies from the University of Illinois at Chicago. He is the coauthor of Lean Kaizen: A Practical Approach to Process Improvement (ASQ Quality Press), a senior member of ASQ, senior member of SME, cofounder and past chair of ASQ’s Lean Enterprise Division, and a member of the Lean Certification Oversight and Appeals Committee. He is Lean Bronze Certified. He can be reached at anthony.manos@proferoinc.com.
Sections
1.1.2. Humility
1.3.5. Coaching & Mentoring
2.2.1.1. 5S Standards and Discipline
3.2.2. Policy Deployment/Strategy Deployment
4.3.5.1. Customer Satisfaction

Brian H. Maskell is president of BMA in Cherry Hill, New Jersey, and St. Albans, Hertfordshire, England. He has an engineering degree from the University of Sussex, England. Brian is certified with the Chartered Institute of Management Accountants (CIMA) in London, the American Institute of Certified Public Accountants (AICPA), and the Institute of Management Accountants (IMA). He is a Fellow of the American Production and Inventory Control Society (APICS). Brian is the author of eight books, including Making the Numbers Count: The Accountant as Change Agent on the World Class Team (second edition) and Practical Lean Accounting: A Proven System for Measuring and Managing the Lean Enterprise (second edition). He can be reached at bmaskell@maskell.com.

Section
4.2.1.5. Lean Accounting

Timothy F. McMahon is the founder of and a contributor to A Lean Journey Blog (http://aleanjourney.com). He has a BS in chemical engineering from the University of Massachusetts and holds a Lean Certification and Six Sigma Black Belt from Central Connecticut State University. Tim is a member of the regional board of directors for AME and currently serves as the VP of program for northeast region. He can be reached at Tim@aleanjourney.com.

Sections
1.3.1. Cross Training
1.3.3. Instructional Goals
1.3.6. Leadership Development
1.3.7. Teamwork
1.3.8. Information Sharing (Yokoten)
1.3.9. Suggestion Systems
2.2.14. Pull System
2.3.6. Organizing for Improvement
2.3.6.1. Kaizen Blitz Events
2.3.7. Countermeasure Activities
2.3.7.1. Mistake and Error Proofing (Poka Yoke)
2.3.7.2. Quick Changeover/Setup Reduction (SMED)
2.3.7.3. One Piece Flow
2.3.7.4. Right Sized Equipment
2.3.7.5. Cellular Flow
2.3.7.7. Material Signals (Kanban)

Dr. Mark W. Morgan is the associate vice president for institutional effectiveness and research at Seminole State College of Florida. Mark earned his doctorate in educational leadership from the University of Florida and is a three-time examiner for the Malcolm Baldrige National Quality Award. Mark was an improvement consultant for Fortune 500 companies for more than 10 years and is the author of three books on measurement and performance improvement, including his latest, The Path to Profitable Measures: 10 Steps to Feedback That Fuels Performance (ASQ Quality Press).

Section
4.1. Principles of Business Results

Frank Murdock is senior process engineer at Plymouth Tube Company in West Monroe, Louisiana. He earned a BS in engineering science at Purdue University, an MS in applied mathematics at the University of Michigan, and an MS in industrial engineering at Wayne State University. Frank spent 28 years with the Ford Motor Company, 8 years as an independent consultant, and 6 years as an adjunct professor at Lawrence Technological University. A senior member of ASQ and an ASQ Certified Six Sigma Black Belt, Frank is chair-elect for the Lean Enterprise Division as well as chair of the ASQ Voice of the Customer Committee. He can be reached at fmurdock@plymouth.com.

Section
4.2.1.6. Voice of the Customer

Mike Osterling has been a lean management practitioner and leader since the mid-1990s and is the lead consultant at Osterling Consulting, a San Diego–based firm. He earned an MBA in international business at San Diego State University and a BS in production and operations management. Mike coauthored The Kaizen Event Planner: Achieving Rapid Improvement in Office, Service, and Technical Environments. He is a certified trainer for the implementation of lean manufacturing (University of Kentucky) and a Lean Six Sigma Black Belt (University of California San Diego). He is certified in production and inventory management (APICS). He can be reached at mike@mosterling.com.

Sections
2.1.5. Jidoka
2.1.7. Seek Perfection

Sections

3.2.1. Enterprise Thinking
3.2.1.1. Organize around Flow
3.2.1.2. Integrated Business System and Improvement System
3.2.1.3. Reconcile Reporting System
3.2.1.4. Information Management

Govind Ramu is a senior manager for global quality systems for SunPower Corporation. Prior to this role, he was Six Sigma Master Black Belt for JDS Uniphase Corporation. Govind is a professional engineer (mechanical) from Ontario, Canada, and an ASQ Fellow. He holds six ASQ certifications. Govind has had articles published in *Quality Progress* and in the Six Sigma forum. He coauthored ASQ’s *The Certified Six Sigma Green Belt Handbook*, for which he received the ASQ Golden Quill Award in 2008. Additionally, Govind was a 2006 and 2011 examiner for the California Awards (CAPE) and a 2010 examiner for the Malcolm Baldrige Award. He can be reached at ramu.govind@gmail.com.

Sections

2.1.5.1. Quality at the Source
2.1.7.1. Incremental Continuous Improvement (Kaizen)
2.2.9. Continuous Improvement Process Methodology
2.2.9.1. PDCA
2.2.9.2. DMAIC
2.2.9.3. Problem Solving Storyboards
2.2.10. Quality Systems
2.2.11. Corrective Action System
2.3.3.3. Failure Mode and Effects Analysis
2.3.4. Presenting Variation Data
2.3.4.1. Statistical Process Control Charts
2.3.4.2. Scatter and Concentration Diagrams
2.3.5.2. Quality Function Deployment
2.3.5.4. Design for Product Life Cycle (DFx)—Cradle to Cradle
2.3.5.6. Design for Manufacturability
Rama Shankar is the managing partner at Delta Management Associates in Glenview, Illinois. She has a master’s degree in engineering management from Northwestern University and a master’s degree in materials management from Indian Institute of Materials Management, India. Rama is the author of *Process Improvement Using Six Sigma: A DMAIC Guide* (ASQ Quality Press). She is a senior member of ASQ and a past chair, section director, and training institute director of the ASQ Chicago Section. Rama is a past Malcolm Baldrige Award examiner, an ASQ CSSBB, and a CQA. She is also a certified trainer by NIST for lean.

Sections

2.1.5. Jidoka
2.1.5.1. Quality at the Source
2.1.5.2. No Defects Passed Forward
2.1.5.3. Separate Man from Machine
2.1.5.4. Multi-Process Handling
2.1.5.5. Self Detection of Errors to Prevent Defects
2.1.5.6. Stop and Fix

With Tim McMahon

1.3.2. Skills Assessment
1.3.4. On-the-Job Training
1.3.6. Leadership Development
1.3.7. Teamwork

With Govind Ramu

2.2.9.1. PDCA
2.2.9.2. DMAIC
2.2.9.3. Problem Solving Storyboards
2.2.11. Corrective Action System
2.2.11.1. Root Cause Analysis
2.2.12. Project Management
2.3.2. Data Collection and Presentation
2.3.2.1. Histograms
2.3.2.2. Pareto Charts
2.3.2.3. Check Sheets
2.3.3. Identify Root Cause
2.3.3.1. Cause & Effect Diagrams (Fishbone)
2.3.3.2. 5-Whys

2.3.3.3. Failure Mode and Effects Analysis

2.3.4. Presenting Variation Data

2.3.4.1. Statistical Process Control Charts

2.3.4.2. Scatter and Concentration Diagrams

Gregg Stocker is an operational excellence advisor at Hess Corporation in Houston, Texas. He earned an MBA from the University of Houston and a BA from Michigan State University. Gregg is the author of *Avoiding the Corporate Death Spiral: Recognizing & Eliminating the Signs of Decline* (ASQ Quality Press). He is a certified purchasing manager from the Institute for Supply Management. He can be reached at gstocker1111@gmail.com.

Sections

2.2.4. 3P Production Process Preparation

2.2.13. Process Design

3.1.1. Systemic Thinking

3.1.2. Constancy of Purpose

3.1.3. Social Responsibility

4.2.2. Goal and Objective Setting

Chad Vincent is a lean manufacturing specialist with Greif in St. Louis, Missouri. He earned a BS in engineering management from Missouri University of Science and Technology. Chad is a senior member of ASQ and SME, and the current ASQ Lean Enterprise treasurer. He serves on the Lean Certification Oversight and Appeals Committee. Chad is a CQE, CRE, CMQ/OE, CSSBB, and Lean Bronze Certified. He can be reached at chadvincent88@gmail.com.

Sections

2.1. Principles of Continuous Process Improvement

2.1.2.2. 7 Wastes (Muda), Fluctuation (Mura), and Overburden (Muri) (with David Foxx)

2.1.5.1. Quality at the Source (with Govind Ramu and Mark Paulson)

2.1.5.3. Separate Man from Machine

2.1.6. Integrate Improvement with Work

2.1.7. Seek Perfection

2.2. Continuous Process Improvement Systems

2.2.2. Lot Size Reduction

2.2.3. Load Leveling
2.2.4. 3P Production Process Preparation
2.2.10. Quality Systems
2.2.10.1. ISO and Other Standards
2.2.11. Corrective Action System
2.3. Continuous Process Improvement Techniques & Practices
2.3.1. Work Flow Analysis
2.3.1.1. Flowcharting (with John Kendrick)
2.3.1.2. Flow Analysis Charts (with John Kendrick)
2.3.1.3. Value Stream Mapping
2.3.1.4. Takt Time Analysis (with Matt Maio)
2.3.8. Supplier Processes External
2.3.8.1. Supplier Managed Inventory
2.3.8.2. Cross-Docking
2.3.8.3. Supplier Assessment and Feedback
2.3.8.4. Supplier Development
2.3.8.5. Supplier Benchmarking
2.3.8.6. Logistics
2.3.9. Supply Processes Internal
2.3.9.1. Material Handling
2.3.9.2. Warehousing
2.3.9.3. Planning and Scheduling
4.3. Key Lean Related Measures
4.3.1. Quality
4.3.1.1. Rework
4.3.1.2. First Pass Yield
4.3.3. Cost
4.3.3.1. Inventory Turns
4.3.3.2. Queue Time
4.3.3.3. Wait Time (delays)
4.3.3.4. Overall Equipment Effectiveness (OEE)
4.3.3.5. Changeover Time
4.3.4. Financial Impact
4.3.4.1. Cash Flow
Pat Wardwell is the chief operating officer at Greater Boston Manufacturing Partnership in Boston, Massachusetts. She holds a BA from the University of Maine and an MBA from Bentley College. Pat is the coauthor of *e² Continuous Improvement System*. Her accomplishments include SME Lean Gold Certified, past chair of the Lean Certification Oversight and Appeals Committee, Shingo Prize recipient and examiner, AME Manufacturing Excellence Awards committee member and examiner, AME Northeast Board of Directors, and member of SME Boston Chapter Leadership Committee. She can be reached at pwardwell@gbmp.org.

Sections (with Bruce Hamilton)

2.1.2. Identification & Elimination of Barriers to Flow
2.1.2.1. Flow & the Economies of Flow
2.1.2.3. Connect & Align Value Added Work Fragments
2.1.2.4. Organize around Flow
2.1.2.5. Make End-to-End Flow Visible
2.1.2.6. Manage the Flow Visually
2.3.7.1. Mistake and Error Proofing (Poka Yoke)
2.3.7.4. Right Sized Equipment
2.3.7.5. Cellular Flow

Jerry M. Wright, P.E., is the senior vice president of lean and enterprise excellence for DJO Global in Vista, California. He earned an MBA in 2002 from the University of Phoenix and is a registered professional engineer in the state of California. He is the annual international conference chair for AME for Chicago in 2012 and also a west region director for AME. He is also the chair of the So Cal Lean Network, an affiliation of more than 75 companies focused on lean and sharing in Southern California, as well as a Shingo Prize examiner and a previous Baldrige Award examiner. He can be reached at jerry.wright@djoglobal.com.

Sections

3.3.1. A3
3.3.2. Catchball
3.3.3. Redeployment of Resources

EDITORS

Anthony Manos is a catalyst with Profero, where he provides professional consulting services, implementation, coaching, and training for a wide variety of organizations (large and small, private and public) in many industries focusing on lean enterprise and lean healthcare. Tony has extensive knowledge of lean and quality in a wide range of work environments. He is trained and certified by the National
Institute for Standards and Technology (NIST) U.S. Department of Commerce in all elements of lean manufacturing. Tony also is a lean champion for 5S Supply.

Relying on his diverse knowledge of business, manufacturing techniques, and applications, Tony has assisted numerous clients in implementing a lean enterprise and lean healthcare. Over the past 10 years, he has helped over 150 companies in several aspects of lean implementation, including team building, standardized work, 5S workplace organization and visual workplace, quick changeover, plant layout, cellular, kanban, total productive maintenance, kaizen events, and hoshin planning. Tony is an internationally recognized speaker and expert on lean and presents at several conferences a year. As an ASQ faculty member, he teaches a two-day course in lean enterprise and a one-day course on kaizen. Tony is the past chair of the Lean Enterprise Division of ASQ. He is a senior member of SME and a member of AME. Tony is coauthor of the book *Lean Kaizen: A Simplified Approach to Process Improvement* and author of many articles on lean and its allied subjects. He serves as an ASQ representative to the Lean Certification Oversight and Appeals Committee. Tony is Lean Bronze Certified and was part of the original team to develop the Lean Certification.

Tony served in the US Navy nuclear propulsion program. He holds an MBA from the University of Illinois at Chicago.

Chad Vincent is a lean manufacturing specialist and corporate operational excellence team member with Greif, Inc. in St. Louis, Missouri, where he provides professional guidance, facilitates implementation, and coaches and trains personnel at manufacturing facilities on lean enterprise and operational excellence. Prior to Greif, he worked as a quality engineer in the medical device field and as a project engineer in the construction industry; he also has worked in management in the logistics and transportation industry.

Chad has served as a senior lead examiner and judge for the Governor’s Quality Award (Arkansas’ equivalent of the Malcolm Baldrige National Quality Award) and is past president of the Leadership Arkansas Alumni Association Board of Directors. Chad is an advocate for ASQ’s Socially Responsible Organization (SRO) Initiative and a member of SME’s Lean to Green Committee. He has written articles, such as “Back in Circulation” for *Quality Progress*, on the utilizing of lean to achieve socially responsible and environmentally favorable results within organizations and on defining the 8 Green Wastes for environment, health, and safety (EHS) professionals to apply lean in their areas of expertise. He is a voting member of the US Technical Advisory Group (TAG) for the ISO 26000 Guidance for Social Responsibility.

Chad earned a BS in engineering management, specializing in quality engineering, from the Missouri University of Science and Technology, in Rolla, Missouri. He is a senior member of ASQ and SME, and is currently the ASQ Lean Enterprise treasurer and serves on the SME/AME/Shingo/ASQ Lean Certification Oversight and Appeals Committee. Chad is a CQE, CRE, CMQ/OE, and CSSBB, and he is Lean Bronze Certified.
Module 1
Cultural Enablers

1.1. Principles of Cultural Enablers
1.2. Processes for Cultural Enablers
1.3. Cultural Enabler Techniques and Practices

Culture is the widening of the mind and the spirit.
—Jawaharlal Nehru

The first section of the Lean Body of Knowledge is dedicated to culture. Although lean is about the tools, it is more about creating a culture of people who truly believe in continuous improvement. This portion of the book focuses on what it takes to create, change, and lead an organizational culture into operational excellence. There is no lean without people. This section explores the importance of leading with humility, showing respect for people, having a well-crafted plan with a sense of urgency, and developing the people and leaders in your organization.
According to Pascal Dennis (2007, 145), author of *Lean Production Simplified*, “Intensity is the soul of lean production, and team members are its heart.” In other words, people are the most critical element of lean production, and the *culture* the team members create is the major source of fuel required to propel lean systems forward in any organization.

In a vast majority of cases, the success or failure of any lean, Six Sigma, or other corporate initiative will depend on the people who execute it rather than on any equipment, consultant, software, or other tools and techniques. Thus, organizations that consider people as the prime appreciating asset and invest adequate time, effort, and money in hiring and developing the right people will get unmatched results (Dalal 2011, 584).

What Is a Culture?

A culture is the sum total of all behaviors, relationships, comprehension, and interactions that fuel overall alignment via collective thoughts, words, and actions.

What Is a Lean Culture?

Lean is an approach to improve quality, increase productivity, reduce costs, and increase customer satisfaction by eliminating waste and creating value.

A lean culture is the sum total of all the lean tools, techniques, and knowledge that exist within an organization at the root level and that fuel the overall organizational alignment via collective lean thoughts, words, and actions toward the elimination of waste and the creation of value.

Organizations that have a strong lean culture do two things:

1. They promote at least five key *cultural enablers* (safety, standards, leadership, empowerment, and collaboration), which allows the lean culture to exist

2. They build their business on the core fundamentals of respect for individuals

An Example of a Strong Lean Culture

The consistent growth, prosperity, innovation, and operational excellence of Toyota are clearly results of the Toyota Production System (TPS), which is built...
on the foundation of a strong and dynamic culture and sophisticated “human systems” consisting of highly motivated and well-trained people in plants, dealerships, and offices around the globe. In *Toyota Culture*, authors Jeffrey Liker and Michael Hoseus (2008) explain Toyota’s four-stage process for building and keeping quality people: attract, develop, engage, and inspire. The “people-centric” culture of Toyota is carefully designed by:

- Finding competent, able, and willing employees
- Beginning the training and socializing process as they hire the people
- Establishing and communicating key business performance indicators at every level of the organization
- Training the people to solve problems and continuously improve processes in their daily work
- Developing leaders who live and teach your company’s philosophy
- Rewarding top performers
- Offering help to those who are struggling (Liker and Hoseus 2008, 44)

What Is a Cultural Enabler?

Just as a sapling requires critical factors like the right soil, adequate sunlight, and water to survive and grow into a strong tree, culture requires factors that allow it to stabilize and pervade throughout the organization. These factors are known as cultural enablers.

Cultural enablers are critical to the people on the journey of building a culture of operational excellence within an organization.

What Constitutes as Cultural Enablers of a Lean Culture?

Cultural enablers of a lean culture include the basic principles of safety, standards, leadership, empowerment, and collaboration.

Basic Principles of Safety

There are only two types of organizations: safe or lucky.

Safety is the prime cultural enabler, as only safe environments can be productive and profitable. Lean organizations believe that merely adhering to all requirements of the Occupational Safety and Health Administration (OSHA) is not sufficient in order to have a safe working environment.

The following two principles are engrained in the culture of lean organizations:

1. Safety is the responsibility of every employee within the organization
2. A proactive versus a reactive approach is required in order to create and maintain a clean, safe, ergonomic, and sustainable work environment

Lean organizations realize that to attain all-encompassing safety standards, they must focus on education and awareness in safety practices related to people’s health and wellness, and interface with people and equipment and environmental aspects.
Personal Safety

Personal safety focuses on security and protection from accidents, injuries, fire hazards, equipment malfunction, and any other aspect threatening the health and well-being of every individual in the organization.

Fatigue Prevention

Fatigue results from a poorly designed workplace, work environment, tools, equipment, and policies and procedures. Practicing workplace ergonomics, which optimizes the comfort of employees while they are interacting with all the elements of their workplace, is the key to reducing fatigue and increasing employee efficiency.

Environmental Safety

Environmental safety involves reducing the carbon footprint of products and processes on the surrounding environment. It encompasses product and process design from cradle to grave, including use of environmentally conscious raw materials, supplies, and packaging materials requiring minimal transportation and minimal waste, along with proactive implementation of recycling or reuse programs.

Some top enablers for creating a culture of safety are the following:

- Focus of top leadership
- Organizational emphasis on safety
- Clearly defined organizational structure
- Clearly defined lines of authority and accountability
- Unambiguous communications
- Trust and engagement
- Ability of organization to learn from failures
- Safety training and sharing of lessons learned

Some top barriers for creating a culture of safety are the following:

- Lack of support from top leadership
- Minimal emphasis or pseudo-emphasis on safety
- A culture of blame and retribution
- Lack of training or sharing of lessons learned

Basic Principles of Standards

Standards are baselines from which improvements can be easily measured. All standards related to safety, communications, operations, human resources, policies, procedures, and tasks need to be standardized across the entire organization. Standardization is not static but dynamic and requires continuous improvement using the Plan-Do-Check-Act model of the Deming cycle (ASQ).

Taiichi Ohno is credited with saying, “Where there is no standard there can be no kaizen.” Thus, a standard is “the best known method/process/system at
a particular point of time” and is a dynamic point of reference that becomes the baseline for future improvements. Every continuous improvement activity must result in the establishment of a new standard. This “new standard” may require establishing a new standardized work sequence, recalculating takt times and establishing new inventory levels, updating visual work instructions, and setting new inspection or quality control standards.

According to Masaaki Imai (1997, 54–56), author of *Gemba Kaizen*, standards have the following key features:

- Represent the best, easiest, and safest way to do a job
- Offer the best way to preserve the know-how and expertise
- Provide a way to measure performance
- Show the relationship between cause and effect
- Provide a basis for both maintenance and improvement
- Provide objectives and indicate training goals
- Provide a basis for training
- Create a basis for audit or diagnosis
- Provide a means for preventing recurrence of errors and minimizing variability

Basic Principles of Leadership

Without support from the top leaders and executives, lean initiatives cannot survive in an organization. The leader is not only required to support lean initiatives in good times but also required to show persistence and constancy of purpose during tough times. The leader needs to develop a clear vision for lean, communicate it effectively to his or her employees, and empower them to adopt it as their own mission. Thus, leadership is the key cultural enabler that determines whether lean is established as a culture in the organization.

Good leaders understand that in an environment of continuous improvement, failures are imminent. But rather than blame people for failures, they ask “why” five times, approach the problem, and create a plan to strengthen the people (Dennis 2007, 130).

According to Dalal (2011, 471–85), there are three types of failures:

1. System level failures
2. Process level failures
3. Human level failures

Great lean leaders avoid focusing on the human level failures, as this would create an environment of fear, distrust, and a culture of risk aversion lacking creativity and innovation. Instead, great lean leaders:

- Focus on system failures (“why”)
- Spend more time to prevent the failure
• Believe that 80% of the failures are avoidable by 20% of planning
• Perform root cause analysis to prevent failures
• Implement dynamic risk assessment to identify and plan for failures
• Use Plan-Do-Check-Act cycle to prevent failures
• Establish a creative and open environment for lessons learning (Dalal 2011, 471–85)

Figure 1.1-1 shows a representation of an empowered culture of trust created by leaders using these techniques.

Basic Principles of Empowerment

A Japanese saying alludes to the fact that a statue of Buddha will not mean much without putting a soul in it (Imai 1997, 242). The soul of a lean organization is employee empowerment.

The prime responsibility of a leader in a lean organization is to develop effective problem solvers and decision makers. The only way a leader can achieve an empowered workforce is by helping to set a vision and relinquishing some authority in order to allow the capable employees to make decisions and influence corporate policies. Empowered employees get to the depths of understanding of lean technology and go beyond the know-how of lean and experience and apply lean with a deeper understanding of the know-why. Thus, lean leaders rely on their

![Diagram showing the 5-Why analysis process](image)

Figure 1.1-1 Empowered culture.

Source: Dalal (2011, 471–85).
empowered employees to optimize the benefits of lean initiatives, ensuring superior levels of customer satisfaction.

Employee empowerment must be done in six steps:

Step 1: Leaders make a commitment to have an engaged workforce
Step 2: Roles and responsibilities are clearly defined
Step 3: Training is conducted for managers, supervisors, staff, and shop-floor personnel
Step 4: Training is conducted for all administrative and support staff
Step 5: A formal idea-suggestion or idea-sharing program that involves all employees is implemented
Step 6: Action is taken to assign responsibility and accountability

Basic Principles of Collaboration

The cultural enabler “collaboration” is the backbone of lean. Lean initiatives do not depend on the knowledge of one but achieve breakthrough results due to the deployment of the collective wisdom of many. In lean organizations, collaboration exists across:

- Various functions
- Different departments
- Staff and union workers—and even between executives and operators

Collaboration and partnerships extend beyond the four walls of the organization and include suppliers, contractors, and, in some cases, competitors.

By design, lean tools allow for a collaborative culture throughout the organization. Nemawashi, A3 form, kaizen events, and several other lean tools are designed for automatic collaboration.

1.1.1. RESPECT FOR THE INDIVIDUAL

One of the most critical aspects of lean cultures is the inherent importance placed on valuing individuals and treating each individual with dignity.

In lean organizations, respect starts with the top leaders and permeates throughout the organization. However, “respect for every individual” does not end at the four walls of the organization; rather, it extends to all customers, suppliers, and stakeholders, including the community in which the organization does business.

Respect allows the lean culture to achieve the following goals:

- Create a culture of cohesive teamwork
- Create a culture of continuous improvement
- Increase employee involvement
- Empower employees
- Encourage diversity
A key requirement and an underlying quality required by employees of lean organizations is humility.

Leaders and employees all practice humility as a technique that allows the process of continuous improvement to go on via open collaboration. In lean cultures, everyone is open to learning from one another and to raising their game incrementally on a daily basis in order to generate superior value and increase customer satisfaction.

The key traits of a humble environment are as follows:

- An open learning environment
- People form a critical element of the value stream
- A long-term relationship based on mutual loyalty
- A mentor-mentee, sensei-student relationship throughout the organization
- Lack of discrimination throughout the organization and the entire supply chain

Thus lean organizations and their leaders focus on operational excellence via a people-centric approach by ensuring an empowered, safe, and collaborative environment based on standards and a philosophy of a wholehearted pursuit of long-term excellence.

1.1.2. HUMILITY

Humility leads to strength and not to weakness. It is the highest form of self-respect to admit mistakes and to make amends for them.

—John J. McCloy

Humility ties in directly with respect for the individual (see Section 1.1.1, “Respect for the Individual”). Humility is considered the quality of being modest, unassuming in attitude and behavior. It also can be taken as feeling or showing respect and deference toward other people. Don’t think of humility in the lean sense as being meek, shy, and timid or of lesser value. Of course, the opposite of being humble is being arrogant, overconfident, condescending, or egotistical or displaying hubris. Humility is a principle that enables the people in your organization to learn, improve, and excel.

Consider two types of humility: personal humility and leading with humility. This approach helps us understand what it takes to develop our own personal style, along with the similarities and differences in leading people.

Personal Humility

Personal humility can be thought of as having pride (not boastful), self-respect, and dignity. These traits are created over the years with a commitment to integrity, honor, and pursuing lifelong learning. Being humble means that you understand
that you don’t know everything and can continually learn from those around you. As you learn, you improve. This also involves understanding your strengths and weaknesses. Understanding your strengths allows you to be a better team member, as you bring certain skills to your workplace. Appreciate your weaknesses (or opportunities for improvement) so you can continually develop and progress as a person. Another important role of humility includes being able to accept personal responsibility for your actions. Admit when something doesn’t go as planned. Hansei is a Japanese word that means “self-reflection” or to acknowledge a mistake and pledge to improve. It is perfectly acceptable to say, “I don’t know; let’s find out.” Humility also includes being authentic to yourself and to others and staying true to your principles or virtues. Another important skill for fostering humility is to perfect your active listening skills and be present for the other person. Humility is also being mindful of others, in your thoughts, speech, and actions. In Stephen Covey’s *The 7 Habits of Highly Effective People* (1989, 235), habit 5 says to “seek first to understand, then to be understood.” This is a classic example of showing your humility. By reserving your desire to jump in, speak up, and be heard and truly trying to understand the other person’s point of view you create a better relationship and find overall solutions to problems. In a way, humility can be thought of as living by the golden rule: Treat others as you would like to be treated. This leads to workplace satisfaction and gratification of a job well done.

Leading with Humility

Leading with humility is not only for the CEO or the president of your organization. Leading with humility should permeate all the way through the ranks to the level of the value-adder. At any one time, everyone has a chance to lead, from daily meetings or training to large-scale projects. Gary Convis (2011) tells of his mentor at NUMMI, Kan Higahsi, telling him his greatest challenge would be “to lead the organization as if I had no power.” This is a sure sign of humility.

In his book *Good to Great*, Jim Collins (2001) talks about Level 5 Leadership, of having personal humility and professional will. Table 1.1.2-1 shows a summary of Level 5 Leadership personal humility traits, adapted from the book.

Leading by Deeds

Building trust to become trustworthy as a leader starts with personal humility. Building trust can take time. Your words and actions demonstrate your ability to

Table 1.1.2-1 Level 5 Leadership—personal humility traits.

- Demonstrates a compelling modesty, shunning public adulation; never boastful
- Acts with quiet, calm determination; relies principally on inspired standards, not inspiring charisma, to motivate
- Channels ambitions into the company, not the self; sets up successors for even greater success in the next generation
- Looks out the window, not in the mirror, to apportion credit for the success of the company—to other people, external factors, and good luck

Source: Adapted from Collins (2001, 39–40).
do what you say. An example of this is a leader who says that the customer comes first but then makes it difficult for the customer to contact him or her—making the customer search a website for a telephone number or navigate lengthy phone menus that lead nowhere. As a humble leader, you will need to know how to be patient in developing your people. While there are always deadlines, proper planning, tapping into the creativity of your employees, and having the patience to stay the course will pay off dramatically as you create a more engaged workforce. Always make sure to give credit to others for their contributions to the success of the organization, and take personal responsibility for any letdowns. Learn how to shine the spotlight on others; let them shine in the eyes of the company. If you can learn how to talk to the CEO and the value-adding worker in the same way, you are developing the type of skills that will make you invaluable to your institution. As a leader, design your systems with respect and humility.

Dwight Davis (2011), associate vice president of Utah State University, on the topic of leading with humility, says, “Humility is a key element in building teams, unifying organizations, unleashing employee capabilities, optimizing relationships, designing systems of accountability and achieving a culture of discipline. Humility simply enables individual and organizational learning and improvement.”

We come nearest to the great when we are great in humility.

—Rabindranath Tagore

REFERENCES

Index

Page numbers followed by f or t refer to figures or tables, respectively.

A
Abnormality, recognizing, 66
Accounting controls, 334
Accounting processes simplified with lean accounting, 334
Actual work time (AWT), 350
Adherence mechanism, 95–96
Adjourning in team building, 38–39
Aligned vs. nonaligned organization, 85, 86f
American Society for Quality (ASQ)
flowcharts and, procedure for creating, 171
formal learning and, 19
inspection defined by, 260
Plan-Do-Check-Act model of the Deming cycle, 4
Quality Glossary, 260
Analysis. See also Work flow analysis
measurement systems in, 342–343
root cause, 148–150
standardized work analysis chart in, 126, 129f, 130
takt time, 180–186, 181f
Analysis of variance (ANOVA), 342
Andon
definition of, 387
for visual feedback, 343
for visual management, 255
for visual representation of production/process status, 97, 97f
Andon board, 97, 97f, 387
Arc, 152
Area cleanliness, 24
Arrangement, functional, 51
Assets of organization, appreciation of, 375
Association of Manufacturing Excellence (AME), 19
A3, 307–309
for automatic collaboration, 7
definition of, 387–388
examples of, 309
format of, 307–308, 308f
for knowledge capture, 308f
origin of, 307
problem solving storyboards and, 143–146, 144–146f, 282
project reports and, 153, 306
purpose of, 307, 309
for VOC with instructions to complete, 309f
Automotive Industry Action Group (AIAG), 140, 199
Autonomation. See also Jidoka
components of, 68, 68f
definition of, 388
in identifying and fixing defects, 78
integrating with mistake-proofing, 75
Availability in OEE, 361
Available time, planned, 360
Average cost per unit, 372

B
Balanced line. See Line balancing
Balanced scorecard, 132–133
Barker, Joel, 13–14, 22
Batch-and-queue, 345, 388
Batch production, 109, 114, 329
Benchmarking
customer satisfaction and, 376
product and process, 223
supplier, 267–268
Bimodal distribution, 188, 189f
Bottleneck
cycle time and, 352–353
definition of, 388
identifying, 126
reducing, 27
Box score, 294, 294f
Box score reporting, 331–333, 332f
Breakthrough continuous improvement (kaikaku), 82–83, 83f
Breakthrough improvement, 224, 224f
Business Process Benchmarking (Camp), 267
Business profitability, 375–378. See also
Customer satisfaction
Business results, measuring, 313–378.
See also Measurement categories; Measurement systems
customer loyalty, 315–316
customer value, 316–317
normal vs. abnormal conditions, 317
overview of, 313
principles of, 314–322

C
Cambridge Advanced Learner’s Dictionary, 285
Camp, Robert C., 267
Capacity development, 307
Capital redeployment, 311
Cash flow, 371–373, 372f
Catchball, 300, 309–310
Cause and effect (CE) diagrams, 196–198
Cells
definition of, 388
office, 293f
Cellular flow, 253–255, 253f
part-quantity-process chart, 253f
production output chart, 255f
U-shaped cell layout, 254f
Center of excellence, 297
Certification
determining, 33
in formal learning, 19
Lean Certification Body of Knowledge Rubric Version 3.0, 380–384
Lean Certification Exam preparation, recommended reading for, 385–386
Change agent, 388
Change initiative, phases of, 21
Changeover, 388
Changeover time, 245f, 369–371, 370f, 371f, 388
Checking, inadequate, 164, 165f
Check sheets, 194–195, 195f
Clear message/reliable fit, 23
Closed-loop operation, 130
Closed-loop thinking, 282–285
closing the loop, 283–284
leader standard work in, 284–285, 284f
PDCA cycle in, 282–283
Coaching. See also Leadership
cultural enabler techniques and, 33–36
learning and, integrating, 18–20
vs. mentoring, 36, 36f
on-the-job training tasks in, 35
people development through, 20–21
for performance, 37
qualities of, 34f
sports analogy for, 34
tasks, 34–35
Collaboration, principles of, 7
Collins, Jim, 9
Commitment, level of, 285, 286
Communication
barriers, 164, 165f
functional, 51
project status and, 153
Communication strategies, 302–305
correlation symbols in, 302, 304f
hoshin communication plan in, 305f
tree diagram example of, 302, 304f
X-matrix example of, 301–302, 303f
Communities of practice, 42
Competitive impact measures, 373–378
assets of organization, 375
business profitability, 375–378
customer loyalty, 374–375
guidelines for, 317–319
Complaints, customer satisfaction and, 377
Computer-aided design (CAD), 217
Concentration diagram, 212–214, 213f, 214f
creating, 212
time dependencies, 213
variable dependencies, 213
Concurrent engineering, 216–218, 217f
Consensus in creating strategic direction, 301
Consistent lean enterprise culture, 277–312
A3 and, 307–309
catchball and, 309–310
custom constancy of purpose in, 285–289
developing, processes for, 290–306
time enterprise thinking and, 290–297, 291f
overview of, 277
policies strategy deployment and, 298–306
principles of, 278–289
redeployment of resources and, 310–312
social responsibility in, 289
systemic thinking in, 278–285
techniques and practices in, 307–312
Constancy of purpose, 285–289
customer value and, 288–289
definition of, 285
level of commitment and, 285, 286
PDCA cycle in, 287
purpose statements and, 286, 286f
results and, 286–287
waste elimination and, 287–288
Constraint, 388
Constraints, theory of, 180, 393
Contact method, 78
Continuous flow
changeover and, 57
communication and, 255
definition of, 388
in future state of value stream, 179
in just-in-time, 61, 62
product development, 217
right-sized equipment and, 248, 249f
single-piece, 348, 352
Continuous improvement
breakthrough (kaikaku), 82–83, 83f
definition of, 388
incremental (kaizen), 81–82, 81f
quality at the source and, 73–74
vs. reengineering, 137f
Continuous process improvement
vs. breakthrough improvement, 137
countermeasure activities in, 240–261
data collection and presentation in,
186–195
flow barriers in, identifying and
eliminating, 50–61
implementing, 137–138
improvement organization in, 235–240
integrated improvement in, 79, 79f
jidoka in, 68–79
“just do it” approach to, 136
just-in-time processing in, 61–62, 62f
methodology, 135–146
overview of, 45–46
PDCA cycle in, 138–140
PDSA cycle in, 135, 138–140
perfection in, seeking, 80–83, 83f
principles of, 47–83
process focus in, 47–50
product and service design in,
215–235
root cause in, identifying, 196–202
scientific thinking in, 62–68
storyboarding in, 143–146, 144f, 145f, 146f
supply processes external in, 261–269
supply processes internal in, 269–276
systems (See Continuous process
improvement systems)
techniques and practices, 167–276
variation data in, presenting, 202–214
work flow analysis in, 167–186
Continuous process improvement systems,
85–165
built-in feedback, 130–132
continuous improvement process
methodology, 135–146
corrective action system, 148–150
knowledge transfer, 163–164
load leveling, 110–114
lot size reduction, 108–110, 109f
overview of, 85–86
process design, 154–160
project management, 151–154
pull system, 160–163
quality systems, 147–148
standard work, 124–130
strategic business assessment, 132–135, 135f
3P, 115–116
total productive maintenance, 116–123
visual workplace, 86–108
Control poka-yoke, 78
Conversion costs, 372
Convis, Gary, 9
Corrective action system, 148–150
Correlation symbols, 302, 304f
Cost accounting, 52, 296, 330. See also Costs
Costing, 296f
Cost measures, 354–371
changeover time, 245f, 369–371, 370t, 371f
guidelines for, 320
inventory turns, 354–356
overall equipment effectiveness, 359–369
queue time, 356–358
wait time, 358–359
Cost reduction, 68–69
customer loyalty and, 374
jidoka and, 68–69
productivity and, 68–69
quality and, 69
Costs
calculating, making decisions without, 331
lean measures, 354–371
life-cycle, 225
material, 372
measuring (See Cost measures)
product, 333
reducing (See Cost reduction)
service, 333
target, 334
target costing and, 334
value stream, 296–297, 331, 333
Countermeasure, 240, 388
Countermeasure activities, 240–261
 cellular flow, 253–255
 material signals (kanban), 257–260, 258f
 mistake- and error-proofing (poka-yoke), 241–243
 one-piece flow, 246–248, 247f
 right-sized equipment, 248–252, 249f
 sensible automation, 256–257
 SMED, 243–246
 source inspection, 260–261
 Covey, Stephen, 9
 C_p and C_{pk}, 231–232, 232f
 Credible message/reliable performance, 23
 Critical path, 153
 Critical path method (CPM), 153
 Critical to quality (CTQ)
 characteristics, identification of, 207–208
 feedback loops and, 131, 131f
 in linking process measures with customer expectations, 235
 in product and service design, 215
 in source inspection, 261
 tree, 207f, 208f
 Cross-docking, 264–266, 265f
 Cross-functional flowcharts, 111
 Cross-functional teams, 40
 Cross training, 27–29
 bottlenecks and, reducing, 27
 employee development and, 28
 matrices, 311, 312f
 plans, creating, 28
 records, visual, 29
 Cultural enabler, 1–44
 collaboration and, 7
 constituents of, 3
 culture and, definition of, 2
 definition of, 3
 empowerment and, 6–7, 6f
 humility and, 8–10
 leadership and, 5–6
 lean culture and, 2–3
 overview of, 1
 processes (See Cultural enabler processes)
 respect and, 7–8
 safety and, 3–4
 standards, 4–5
 techniques and practices (See Cultural enabler techniques and practices)
 Cultural enabler processes, 11–26
 environmental systems, 23–25
 learning and coaching, 18–20
 message deployment, 17–18, 17f
 modeling lean principles, values, philosophies, 15–16
 motivation, empowerment, involvement, 21–23
 people development, 20–21
 planning and deployment, 11–12
 safety systems, 25–26
 urgency, creating sense of, 13–15
 Cultural enabler techniques and practices, 27–44
 coaching and mentoring, 33–36, 36f
 cross training, 27–29
 information sharing, 41–42
 instructional goals, 31–32
 leadership development, 36–38
 on-the-job training, 32–33
 skills assessment, 29–31
 suggestion systems, 42–44
 teamwork, 38–41
 Culture, 2
 Current state, 176–177
 Customer loyalty, 374–375
 business results and, measuring, 315–316
 cost reduction and, 374
 customer delivery times, optimizing, 375
 external quality, optimizing, 374
 internal lead times, optimizing, 375
 internal quality, optimizing, 374
 Customer satisfaction, 376–378
 benchmarking and, 376
 complaints and, 377
 customer’s point of view and, understanding, 377
 goals and objectives in, setting, 341–342
 positive press and, 377
 repeat orders and, 377
 social media and, 377–378
 surveys and, 377
 using measurements and, 377
 Voice of the Customer and, 376
 Customer value
 business results and, measuring, 316–317
 in constancy of purpose, 288–289
 lean accounting and, 334
 Cycle, 389
 Cycle time
 calculating, guidelines for, 320, 351–353
 chart, 352
 definition of, 347, 351, 389
 Data collection and presentation, 186–195
 check sheets in, 194–195, 195f
 Dalal, Adil, 5, 375
histograms in, 187–190
Pareto charts in, 190–193, 192f, 193f
Davis, Dwight, 10
Deeds, leading by, 9–10
Defects
 autonomaion in identifying and fixing, 78
detecting errors to prevent, 77–78
jidoka in reducing, 74, 346
none passed forward, 74
product, making, 56
stop and fix, 78–79
Define-Measure-Analyze-Design-Verify, 135
Define-Measure-Analyze-Improve-Control (DMAIC), 135, 138, 140, 141–143, 141f
Delivery measures, 348–353
 actual work time, 350
cycle time, 353
lead time, 353
takt awareness, 351
takt time, 349–351
Deming, W. Edwards, 63, 135, 138, 139–140, 204, 282–283, 285. See also Plan-Do-Check-Act (PDCA)
Dennis, Pascal, 2, 65, 77, 280
Design FMEA, 199–200, 201–202f
Design for Assembly (DFA), 225, 226
Design for Cost (DFC), 225, 226
Design for Disassembly (DFD), 225
Design for Excellence (DFE), 217–218, 224
Design for Green (DFG), 225, 226–227
Design for Installation (DFI), 225
Design for Lean (DIL), 215
Design for Lean Six Sigma (DFLSS), 215
Design for Logistics (DFL), 225
Design for Manufacturing (DFM), 225, 233–235
 automatic assembly inspection in, 235
definition of, 226
designing parts with nonsymmetric profiles in, 234
ease of fabrication in, 234
mistake-proofing principles in, 233
reduction of number parts in, 234
simplification of design in, 234
standardization in, 234
transportation and storage in, 234
Design for Poka-Yoke or Mistake-Proofing (DFP), 225
Design for Quality (DFQ), 225
Design for Reliability (DFR), 225, 226
Design for Reuse (DFU), 225
Design for Safety (DFS), 225
Design for Test (DFT), 225
Design for Warranty and Service (DFW), 225
Design for X (DFX), 215, 223–231
 benefits of, 224
 breakthrough improvement, 224, 224f
definitions of, 226
 elements of, 225–226
 life-cycle cost, 225, 225f
 metrics to measure the effectiveness of, 230–231
 rolling out, strategy for, 230
 strategy, 230
 subject matter experts (SMEs) for, 230
Design for X (DFX) tools, 227–231
 Designing Stage Gate (Full Scale Development Step), 229–230
 End of Life Stage Gate (Recycling Step), 230
 interactions, 228
 list of, 227–228
 Manufacturing Stage Gate (Start of Production Step), 230
 Opportunity Assessment Stage Gate (Concept Step), 228
 Planning Stage Gate (Concept Step), 228–229
 Verification and Validation Stage Gate (Full Scale Development Step), 230
Design of experiment (DOE), 300
Detect device, 243, 244f
Direct observation, scientific thinking and, 66–68
Discarded knowledge, 164, 165f
Discipline, 108
Distribution, 188–189
Dock-to-dock days, 372
Downtime, 360–361
Drill Deep and Wide (DDW), 150
DROSS, 23
Drucker, Peter, 285, 338, 374
Dynamic give and take, 300–301
Dynamic thinking, 281–282
E
Early in/early out, 23
Economic order quantities (EOQ), 244
Economies of flow, 51–52
 cost accounting, 52
 functional arrangement, 51
 functional communication, 51
 specializing improvement and quality, 51–52
Education, 20–21
 in five phases of change, 21
 in lean principles, 326
 for lean transformation, 21
 LPO and KPO and, 235
 PDCA model in, 139
 people development through, 20–21
 three-step approach to, 22
 Voice of the Customer in, 337
8 Discipline (8D) methodology, 150
80/20 rule, 190–191
Electronic communication, 217
Electronic kanban, 259
Employee development, 28
Empowerment, 21–23
 achieving by engaging employees, 375
 in change initiative, 21
 cultural, 6, 6f
 in developing assets for competitive impact, 375
 in improvement integrated with work, 79
 principles of, 6–7
 quality at the source and, 74
 steps in, 7
 visuality for creating, 92
Enlightenment in change initiative, 21
Enrichment in change initiative, 21
Enterprise thinking, 290–297, 291
 improvement system in, 294
 information management in, 296–297
 integrated business system in, 294
 organizing around flow in, 292–293
 reporting system in, reconciling, 294–296
Environmental safety, 4
Environmental systems, 23–25
 area cleanliness in, 24
 HVAC in, 24–25
 lighting in, 24
Equipment, right-sized. See Right-sized equipment
Equipment availability, 359, 360, 389
Equipment effectiveness. See Overall equipment effectiveness (OEE)
Ergonomics
 DFME and, 218
 DFME tools and, 228, 229
 movement and, 56
 point kaizen and, 235
 right-sized equipment criteria and, 249f, 251, 252
 work safety and, 25–26
Error detection, 389. See also Mistake- and error-proofing (poka-yoke)
Error-proofing, See Mistake- and error-proofing (poka-yoke)
Event lean, 12
Experience in change initiative, 21
Experiments
 design of, 300
 Hawthorne Works, 23–24
 nested, 300
External feedback loop, 130–131
External setup, 389
Extrinsic motivation, 37

F
Fail-Safe Leadership (Martin and Mutchler), 17
Failure mode, effects, and criticality analysis (FMECA), 342
Failure mode and effects analysis (FMEA), 198–203
 AIAG description of, 199
 constructing, 200, 201–202f
 Design FMEA, 199–200, 201–202f
 implementing, 202
 influential factors determined by, 342
 Process FMEA, 199–200, 201–202f, 203f
 purpose of, 199
Failures in time (FIT), 226
Fatigue prevention, 4
FAXbans, 259
Feedback
 andon for visual, 343
 built-in, 130–132
 loops, 130–132, 131f
 rapid, 242
 real-time, visible, 343
 supplier assessment and, 266
FIFO (first-in, first-out), 389
Financial impact measures, 371–373
Financial reports for lean operations, 331–334. See also Reporting
 calculating product cost, making decisions without, 331
 closing the books, 333
 compliance with regulatory requirements, 333–334
 external reporting, 333
 inventory valuation, 333
 plain language financial statements, 331
 product costing, 333
 service costing, 333
 value stream costing, 331, 333
First pass yield (FPY), 346–348, 372, 389
First-Question-Is-Free Rule, 94–95, 95f
Fishbone diagrams, 196–198, 197f

5S, 104–108
 - definition of, 104, 387
 - discipline, 108
 - set in order, 106–107
 - shine, 107
 - sort, 105–106, 105f
 - standardize, 107–108
 - sustain, 108

5-Whys, 198, 199f, 387

Fixed value, 78

Flexibility in workforce, 311

Floor space, 372

Floor time, allocating, 49

Flow
 - analysis charts, 171–172, 173f, 174f
 - definition of, 389
 - economies of (See Economies of flow) in enterprise thinking, 292–293

Flow barriers, 50–61
 - fluctuation, 52, 57
 - inventory, 55–56
 - knowledge disconnect, 56–57
 - make end-to-end flow visible, 60–61
 - making defective product, 56
 - manage flow visually, 61
 - organize around flow, 59–60
 - overburden, 52, 57–58
 - overprocessing, 55
 - overproduction, 54
 - transportation, 55
 - value added work fragments, 58–59
 - waiting, 55
 - waste, 52, 53–54, 53f

Flowchart, 169–171
 - components of, 171
 - creating, 171
 - example of, 168f, 169f, 170f
 - IDEF Standard, 169
 - use of, 171

Flow kaizen, 236

Flow production. See Flow

Fluctuation (mura), 52, 57, 391

Ford, Henry, 58–60, 98–99, 150, 373

Fordism, 98–99

Ford Motor Company, 268

Ford Production System, 59

Formal learning, 19

Forming in team building, 38f, 39

4 Ms, 63, 197

Friedman, Thomas, 373

Fukuda, Ryuji, 301

Functional teams, 39

Future state, 177–180. See also Countermeasure

G

Gantt chart, 152, 152f

Gemba, 29, 65f, 66–68, 389

Gemba Kaizen (Imai), 5, 65, 66–68, 82–83

Gemba walk, 68, 295, 341, 389

Glossary of terms, 387–393

Goal and objective setting, 338–342
 - customers benefited by, 341–342
 - definition of, 338
 - example of, 339f
 - PDCA cycle in, 339–340, 340f
 - SMART objectives and, 340–341

Going to gemba, 66–68

Good to Great (Collins), 9

Group. See Team

H

Handoff, 164, 165f

Hansei, 389

Hawthorne Works experiments, 23–24

Heating, ventilation, and air conditioning (HVAC), 24–25

Heijunka, 389. See also Production leveling

Heijunka box, 114, 114f

Higahsi, Kan, 9

Histogram, 187–190
 - with bimodal distribution, 189f
 - constructing, 189–190
 - interpretation of, 187–189
 - modes in, 188, 189
 - with negatively skewed data, 189f
 - with normal distribution, 188f
 - shape, 187–188
 - statistics, 187
 - symmetry, 188, 189

Holistic thinking, 280–281

Honeywell Federal Manufacturing & Technologies (FM&T), 319–320

Hoshin kanri, 389. See also Policy deployment/strategy deployment

House of Gemba, 64, 65f

House of Quality. See Quality function deployment (QFD)

House of Toyota, 63, 64, 64f, 68

Humility, 8–10
 - leading by deeds, 9–10
 - leading with, 9
 - personal, 8–9, 9f
 - traits, 9
I

Idea board, 43, 43f
IDEF Standard, 169
Imai, Masaaki, 5, 65, 66–68, 82–83
Improvement, specializing, 51–52
Improvement organization, 235–240
 flow kaizen, 236
 individual (point kaizen), 235
 kaizen blitz, 235–236
 kaizen blitz events, 236–240
 supply chain kaizen, 236
 work teams (mini kaizen), 235
Improvement system in enterprise thinking, 294
Incremental continuous improvement (kaizen), 81–82, 81f
Individual (point kaizen), 235
Informal learning, 19
Information
 deficits, problem of, 92–94
 flow, 389 (See also Value stream)
 management in enterprise thinking, 296–297, 296f, 297f
 sharing (yokoten), 41–42
Innovation, tactics of, 22–23, 22f
Inspection
 automatic assembly, in DFM, 235
 definition of, 260, 389
 in flow analysis charts, 171
 100%, in poka-yoke, 242
 source, 260–261
Instructional goals, 31–32
Integrated business system in enterprise thinking, 294
Integrated improvement, 79, 79f
Internal feedback loop, 130–131
Internal setup, 390
Intrinsic motivation, 37
Inventory
 definition of, 55, 390
 flow barriers, 55–56
 reduction with mixed model production, 114, 114f
 space, 271–272
 supplier managed, 261–264, 263f, 264f
 turns, 354–356
 valuation, 333
 value, 372
 waste and, 55–56
Involvement, 21–23
Ishikawa diagrams, 196–198
Ishikawa’s modified PDCA cycle, 138, 139f

J

Japanese manufacturing, 98
Jidoka, 68–79. See also Autonomaion; Defects
 in cost reduction, 68–69
 in defect and error reduction, 74, 346
 definition of, 68, 390
 implementing, 70–79
 man/machine separation and, 74–75, 74f, 75f
 in multi-process handling, 76–77, 76f
 overproduction and, controlling, 69
 in problem solving, 70
 in quality at the source, 70–74
 in respect for people, showing, 69–70
Job element, 130
Job element sheet, 130f
Job rotation, 311
Jones, Daniel, 261, 354, 376
Juran, Joseph, 135–136, 190
Just-in-time (JIT)
 in continuous process improvement, 61–62
 as core element of lean, 376
 definition of, 61, 390
 ideal state of, 62, 62f
 in no defects passed forward, 74

K

Kaikaku, 390
Kaizen, 235–240
 definition of, 390
 flow kaizen, 236
 kaizen blitz, 235–236
 kaizen blitz events, 236–240
 pitfalls, 238–239
 point kaizen, 235
 steps in, 238f
 supply chain kaizen, 236
 work teams (mini kaizen), 235
Kaizen blitz, 235–236
Kaizen blitz events, 236–240
Kaizen event, 235–236, 390
Kanban
 boards, 259
 cards, 259
 definition of, 390
 electronic, 259
 signals, 257–260
 two-card systems, 259
Key performance indicators (KPIs), 335, 343
Knowledge disconnect, 56–57
Knowledge transfer, 163–165, 164
Knowledge waste, 164, 165
Kroc, Ray, 376

L

Largest gap order picking, 275, 275
Law of the vital few, 190–191
Leaders. See also Leadership; Leading
problems faced by, 37
qualities of, 36
Leadership. See also Coaching
change management in, 38
definition of, 36
development, 36–38
environment, critical elements in, 37
expectations, establishing, 37
motivation in, 37
principles of, 5–6
Leader standard work, 284–285, 284, 390
Leading
by deeds, 9–10
with humility, 9, 9t
Lead time, 353, 390
Lean, 2, 390
Lean accounting, 327–334. See also Financial
reports for lean operations
accounting controls and, 334
accounting processes simplified with, 334
applying, 330
customer value and, focusing on, 334
introduction to, 327–328
lean performance measurements,
330–331, 330 t
need for, 328–329
target costing and, 334
traditional accounting vs., 329–330
transaction elimination and, 334
value-based pricing and, 334
Lean Bronze Certification, 19, 349
Lean Certification Body of Knowledge
Rubric Version 3.0, 380–384
Lean Certification Exam preparation,
recommended reading for, 385–386
Lean Champion, 391
Lean culture, 2–3
Lean enterprise, 391
Lean manufacturing. See Just-in-time (JIT)
Lean measures, 344–378
categories, 344
competitive impact, 373–378
cost, 354–371
delivery, 348–353
financial impact, 371–373
guidelines for, 322, 332, 344
performance, 330–331, 330 t
quality, 345–348
Lean principles, modeling, 15–16
Lean production. See Just-in-time (JIT)
Lean Production Simplified (Dennis), 2, 65,
77, 280
Lean roadmap, 11–13, 11f
Lean–Six Sigma program, 33
Lean systems and tools in TPM, 123
Lean Thinking (Womack and Jones), 261,
354, 376
Lean transformation, 11–13
education needed for, 21
kaizen blitz events needed for, 236
in lean accounting, 328–329
pillars of, 11–12
requirements for, 16
roadmap for, 12–13, 13f
Learning
coaching and, integrating, 18–20
formal and informal, 19
Learning to See (Rother and Shook), 172,
179, 344
Lighting, 24
Liker, Jeffery, 268
Line balancing, 181–186, 391
Line balancing examples, 182–184, 185f, 186f
Little’s law, 346–348
Load leveling, 110–114, 391. See also
Production leveling
Logistics, 268–269
Lombardi, Vince, 34, 80
Look-see, 259
Lot delay in flow analysis charts, 171
Lot size reduction, 108–110, 109f

M

Machine loss pyramid, 119, 120, 120f
Machine redeployment, 311
Make one, move one. See Continuous flow
Malcolm Baldrige National Quality Award, 223
Management by fact, 167
Management focus, 278–279, 279f
Management: Tasks, Responsibilities and
Practices (Drucker), 338
Managing to Learn (Shook), 307
Man/machine separation, 74–75, 74f, 75f
Manufacturing design rules, 226, 233
Manufacturing resource planning
(MRP II), 391
Index

Martin, Linda L., 17
Mass production, 391
Material cost, 372
Material handler, 392
Material handling, 269–272
 first-in, first-out, 270
 index of liveliness, 270f, 270t
 inventory space and, 271–272
 production line/process support, 272f
 system for, setting up, 270–271
 traditional, 269f
Material requirements planning (MRP), 391
Material resource planning (MRP), 275
Material signals (kanban), 257–260, 258f
McCloy, John J., 8
Mean time between failures (MTBF), 226
Mean time to failure (MTTF), 226
Measurement, definition of, 323
Measurement categories, 317–322. See also
 Lean measures
 competitive impact, 317–319
 cost and productivity, 320
 cycle time, 320
 interdependence of, 323–325
 people development, 320–322
 quality, 319–320
Measurement systems, 323–343
 analysis, 342–343
 flow, 326–327
 goal and objective setting, 338–342
 interdependence of, 323–325
 internal, aligned with what matters to
 customers, 325–326
 lean accounting, 327–334
 measurement, definition of, 323
 reporting, 343
 results from whole system, 326
 Voice of the Customer, 335–338
 waste, 326–327
MEDRAD, 318–319
Mentoring, 33–36
 vs. coaching, 36, 36f
 qualities, 34f
Message deployment, 17–18, 17f
Midpoint order picking, 274, 274f
Milk run, 271–272, 363–364, 391
 creating, 271–272
 definition of, 391
 example of, 272f
 to reduce transportation waste, 263–264
Misalignment, 164, 165f
Mistake- and error-proofing (poka-yoke), 241–243
 criteria, 78
 definition of, 73, 391
 detect device, 243, 244f
 low cost and simple, 242
 100% inspection, 242
 prevent device, 243, 243f
 rapid feedback, 242
 types of, 78, 242–243
Mixed model production, 112–114
 different volumes for each product type, 113–114, 114f
 equal volumes for each product type, 113
Mixed pull system, 162–163, 162f
Mode, 188, 189
Modeling
 definition of, 15
 lean principles, values, philosophies, 15–16
Model sequence, 111
Model volume, 111–112, 112f
Motion-step, 78
Motivation, 21–23
Movement, 56
Muda. See Waste (muda)
Multimodal distribution, 188
Multi-process handling, 76–77, 76f
Mura (fluctuation), 52, 57, 391
Muri (overburden), 52, 57–58, 391
Mutchler, David G., 17
N
Nested experiments in creating strategic
 direction, 300
NETMA syndrome, 310
Net present value (NPV), 154
Node, 152
Non-value-added, 391
Norming in team building, 38f, 40
Nucor Corporation, 287
O
Objective setting. See Goal and objective
 setting
Occupational Safety and Health
 Administration (OSHA), 3, 23
Ohno, Taiichi, 4–5, 38, 52–54, 59–60, 67, 75,
 80, 248, 257, 277, 327, 354
One by one flow. See Continuous flow
 100% inspection, 242
One-piece flow, 246–248, 247f, 391. See also Continuous flow
One-touch exchange of die (OTED), 243
On-the-job training (OJT), 32–33
certifications, determining, 33
coaching tasks in, 35
informal vs. formal, 19
lessons learned post-training and, conducting, 33
post-training evaluation criteria and, setting up, 33
successful program of, considerations for, 32
trainer in, selecting and preparing, 32
training materials for, developing, 32

On-time shipment, 372
Open-loop operation, 130
Organization, aligned vs. nonaligned, 85, 86f

Overall equipment effectiveness (OEE), 359–369. See also Total productive maintenance (TPM)
availability in, 361
calculations in, 359–360
definition of, 359, 391
example of, 368–369
factors in, 359
goals of, 364, 365
loss categories, 118f
overall labor effectiveness and, 365, 367–368f
performance and, 361–362
planned available time and, 360
planned downtime and, 360
quality loss and, 362
shift by comparison and, 364f
shift in manufacturing facility and, example of, 363
Six Big Losses and, 119f, 365, 366, 366f
unplanned downtime and, 360–361
value stream and, 364, 365f
visual representation of, 362f
waterfall chart, 118f

Overall labor effectiveness (OLE), 365, 367, 368f

Overburden (muri), 52, 57–58
Overprocessing, 55
Overproduction, 54

P

Pareto, Vilfredo, 190
Pareto chart, 190–193
constructing, 191–193
time of, 192f, 193f

Pareto principle, 190–191
Part-quantity-process chart, 253f
Patton, George S., 67
Payback period, 154
People development
in cultural enabler processes, 20–21
measures, 320–322
Perfection, seeking, 80–83
breakthrough continuous improvement in, 82–83, 83f
incremental continuous improvement in, 81–82, 81f
Performance
loss, 361
measures, 330–331
overall equipment effectiveness and, 361–362
Performing in team building, 40
Personal humility, 8–9
Personal safety, 4
Philosophies, modeling, 15–16
Pictogram. See Concentration diagram
Plan, establishing and implementing, 180
Plan-Do-Check-Act (PDCA), 135, 138–140, 138f. See also Countermeasure activities
act in, 300
in A3, 307
check in, 299
in closed-loop thinking, 282–283
in coaching, 35
in constancy of purpose, 287
in continuous improvement process methodology, 138–140, 140ff
Deming’s model of, 4, 140f, 283f
do in, 299
in education, 139
goal and objective setting and, 339–340, 339f, 340f
Ishikawa’s modified, 138, 139f
plan in, 299
in policy deployment, 299–300
in suggestion systems, 43, 43f
wheel, 282–283
Plan-Do-Study-Act (PDSA)
in continuous process improvement, 135, 138–140
for Voice of the Customer, 336, 338f
Planned available time, 360
Planned downtime, 360
Planning and deployment, 11–13
Planning in supply processes internal, 275–276
Point kaizen, 235

H1403_Manos_pi_420.indd 405
6/4/12 9:09 AM
Point-of-use storage (POUS), 252, 391
Poka-yoke. See Mistake- and error-proofing (poka-yoke)
Policy deployment/strategy deployment, 298–306
 align strategies and execution in, 301–302
 communication strategies in, 302–305
 dynamic give and take in, 300–301
 forming consensus in, 301
 nested experiments in, 300
 resource deployment and allocation in, 306
 scientific thinking in, 299–300
Positive press, customer satisfaction and, 377
PQCDSM, 375
Prevent device, 243, 243f
Problem-solving teams, 39
Process capability, 157, 157f
Process capacity, 157–159, 158f
Process delay in flow analysis charts, 171
Process design, 154–160
 in lean thinking, 160
 in prioritizing improvement efforts, 159, 160f
 process capability and, 157, 157f
 process capacity and, 157–159, 158f
 process stability and, 155–157, 156f
 in SIPOC, 154–155, 155f
 streamlining and, 159
Process FMEA, 199–200, 201–202f, 203f
Process focus, 47–50
 on floor time, allocating, 49
 importance of, 50
 lean mind-set and process vs. results focus, 48f
 overview of, 48
 on process in operation, 49
 process measures in, 49–50
Processing in flow analysis charts, 171
Process in operation, 49
Process kaizen, 238
Process lead time (PLT), 353
Process measures, 49–50
Process stability, 155–157, 156f
Product and service design, 215–235
 benchmarking in, 223
 concurrent engineering in, 216–218, 216f
 DFM, 233–235
 DFX, 223–231
 QFD, 218–223
 variety reduction and, 231–233
Product development continuous flow (PDCF), 217
Product development process. See Design for X (DFX) tools
Product family, 175–176, 391
Production (analysis) board, 392
Production capacity chart, 126, 127f
Production leveling, 110–114, 110f
 mixed model production, 112–114
 model sequence, 111
 model volume, 111–112, 112f
 total production volume, 111, 111f
Production output chart, 255f
Production smoothing. See Load leveling
Productivity, 392
Productivity measures, 320
Product life cycle, design for. See Design for X (DFX)
Product safety, 25
Profits, 372
Program evaluation and review technique (PERT), 152–153, 153f
Project charter, 151
Project management, 151–154
 project charter in, 151
 project planning in, 151–153
 project results and, evaluating, 153–154
 project status and, communicating, 153
 requirements for, 151
Project planning, 151–153
 CPM, 153
 Gantt chart, 152, 152f
 PERT, 152–153, 153f
Project results, evaluating, 153–154
Project status, communicating, 153
Pull, 392
Pull production, 257, 392
Pull system, 160–163
 mixed, 162–163, 162f
 sequential, 162, 162f
 supermarket, 161, 161f
Purpose statements, 286, 286f
Push, 392
Push production, 108–109

Q
Quality, specializing, 51–52
Quality at the source, 70–74
 continuous improvement and, 73–74
 poka-yoke and, 73
 self-checks and, 72–73
 standard work and, 71–72
 successive checks and, 72
 visual management and, 73
Quality function deployment (QFD), 218–223, 219f, 221f, 222f
 attic in, 220
 basement in, 221
 left wing in, 219–220
 living room in, 220
 practical challenges in, 222–223
 right wing in, 220–221
 roof in, 221–222
Quality loss function, 232, 233f, 362
Quality loss in OEE, 362
Quality management system (QMS), 200
Quality measures, 345–348. See also
 Customer loyalty
 first pass yield, 346–348
 guidelines for, 319–320
 rework, 345–346
Quality systems, 147–148
Quality Trilogy (Juran), 135–136, 136f
Queue time, 356–358
 calculating, 357
 definition of, 356, 392
 utilizing, 357–358
Quick changeover, 392
Quick changeover/setup reduction, 243–246, 246f
 Quick kaizen, 235–236

R
Rapid kaizen, 235–236
Reengineering vs. continuous
 improvement, 137f
Repeat orders, customer satisfaction and, 377
Reporting. See also Financial reports for lean operations
 A3 project reports and, 153, 306
 box score, 331–333, 332f
 in enterprise thinking, 294–296
 measurement systems, 343
Resources
 deployment and allocation of, 306
 manufacturing resource planning and, 391
 material resource planning and, 275
 redeployment of, 310–312
Respect
 for people, showing, 69–70
 principles of, 7–8
Return on investment (ROI), 154, 256–257
Revenue, 372
Right-size, 392
Right-sized equipment, 248–252, 249f
 continuous flow and, 248
 countermeasure activities and, 248–252
 ergonomics and, 251, 252
 process at a glance sheet, 250f
 selection criteria, 251–252f
Root cause, identifying, 196–202
 analysis for, 148–150
 cause and effect diagrams for, 196–198
 5-Whys for, 198, 199f
 FMEA for, 198–203, 201–202f
Root cause analysis (RCA), 148–150
Rother, Mike, 172, 179, 344
Runner, 392

S
Safety
 environmental, 4
 fatigue prevention, 4
 personal, 4
 principles of, 3–4
 product, 25
 systems, 25–26
 work, 25–26
Sales per person, 372
Scatter diagram, 209–212, 210f, 211f
Scheduling in supply processes internal, 275–276
Scientific thinking, 62–68
 abnormality and, recognizing, 66
 direct observation and, 66–68
 example of, 63
 overview of, 62–63
 stability and, 63
 standardization and, 64–66
 strategic direction and, creating, 298f, 299–300
Seemingly simple/small steps, 22
Self-checks, 72–73
Self-managed teams, 40
Sensible automation, 241, 248, 249, 256–257
Separation of man from machine, 109
Sequential pull system, 162, 162f
Service design. See Product and service
design
Service family, 175–176
Set in order, 106–107
 7 Habits of Highly Effective People, The
 (Covey), 9
 7 Wastes. See Waste (muda)
Shadow board, 123, 392
Shape, 187–188
Shewhart, Walter A., 63, 135, 138, 204
Shine, 107
Index

Shingo, Shigeo, 47, 60, 72–73, 77–78, 171–172, 240, 243–246, 369
Shingo Prize, 19, 62
Shingo Transformational Process, 45, 45f
Shook, John, 172, 179, 307, 344
Single minute exchange of dies (SMED), 243–246, 369, 392
Single-piece flow, 246–248, 247f, 326, 392
Single point lessons, 73, 130
Six Big Losses, 119f, 365, 366, 366t
Six Sigma, 33, 135, 138, 140, 141–143
60-minute board. See Production (analysis) board
Skill matrix
 competency levels and, 31f
definition of, 29
developing, 29–31
element of, 30f
Skills assessment, 29–31
SMART objectives, 340–341
Sobek, Durward, 307
Social media, customer satisfaction and, 377–378
Social responsibility, 289
Society of Manufacturing Engineers (SME), 19, 20
Sort, 105–106
Source inspection, 260–261
Spaghetti diagram, 56, 130, 159f, 392
Stability, scientific thinking and, 63
Standardization, 64–66
definition of, 64, 392
in Design for Manufacturing, 234
scientific thinking and, 64–66
Standardize, 107–108
Standardized work analysis chart, 126, 129f, 130
Standardized work combination table, 126, 128f
Standard operating procedures (SOPs), 111
Standards, principles of, 4–5
Standard work
 in continuous process improvement systems, 124–130
definition of, 392
job element sheet and, 130
production capacity chart and, 126, 127f
in quality at the source, 71–72
resistance to, 125f
standardized work analysis chart and, 126, 129f, 130
standardized work combination table and, 126, 128f
Statistical process control (SPC) charts, 204–209
Stop and fix, 78–79
Storage
 in Design for Manufacturing, 234
 point-of-use, 252, 391
Storming in team building, 38–39
Storyboards, 143–146, 144–146f
Strategic business assessment, 132–135
 balanced scorecard in, 132–133
 benefits of, 132
 measures useful for, 135f
 organizational data for, 133–135, 134f
Strategic direction
 consensus in creating, 301
 scientific thinking and, creating, 298f, 299–300
Strategy deployment. See Policy deployment/strategy deployment
Streamlining, 159
Subject matter experts (SMEs), 230
Suboptimizing, 52, 268
Successive checks, 72
Suggestion systems, 42–44
 components of, essential, 42–43
 PDCA cycle in, 43
 successful, key points in, 43–44
Supermarket pull system, 161, 161f, 393
Supplier
 assessment and feedback, 266
 benchmarking, 267–268
development, 266–267
 managed inventory, 261–264, 263f, 264f
Supplier-Input-Process-Output-Customer (SIPOC), 111, 154–155, 155f
Supply chain
 kaizen, 236
traditional, 262f
Supply processes external, 261–269
 benchmarking in, 267–268
cross-docking in, 264–266, 265f
 logistics in, 268–269
 supplier assessment and feedback in, 266
 supplier development in, 266–267
 supplier managed inventory in, 261–264
Supply processes internal, 269–276
 material handling in, 269–272, 269f
 planning and scheduling in, 275–276
 warehousing in, 272–275
Surveys, 377
Sustain, 108
Swim lane flowchart, 111
Symmetry (skewness), 188, 189f
Systemic thinking, 278–285, 280f
 close-loop thinking and, 282–285
dynamic thinking and, 281–282
 holistic thinking and, 280–281

T
Tacit knowledge, 164
Tactics of Innovation (Barker), 13–14
Tagore, Rabindranath, 10
Taguchi, Genichi, 232
Takt awareness, 351
Takt time, 349–351
 analysis, 180–186, 181f
 calculating, 349–350
 definition of, 350, 393
 process cycle time chart, 352f, 353f
 rules, 351
Target condition. See Countermeasure
Target costing, 334
Taylor, Frederick W., 98
Team
 adjourning in, 39
 cross-functional, 40
 functional, 39
 vs. groups, 40f
 meetings, 297
 members of, picking, 40–41
 problem-solving in, 39
 self-managed, 40
 team building in, four phases of, 38–39, 38f
 virtual, 40
 work, 38–41
Theory of constraints, 180, 393
3P (Production Process Preparation), 115–116
Throughput, 347, 393
Tolerance stacking, 232–233
Total production volume, 111, 111f
Total productive maintenance (TPM), 116–123. See also Overall equipment effectiveness (OEE)
 definition of, 393
 elements of, 117
 implementing, 121–123
 lean systems and tools, 123f
 machine loss pyramid in, 119, 120, 120f
 nonproduction example in, 121
 overall equipment effectiveness in, 117–119, 118f
 production example in, 119–121
techniques, 116
Toyoda, Akio, 33
Toyoda, Kiichiro, 75, 148
Toyoda, Sakichi, 68, 257
Toyota Production System. See Just-in-time (JIT)
Toyota Way, The (Liker), 268
Training, 20–21. See also Cross training;
 On-the-job training (OJT)
Transaction elimination, 334
Transportation
 in Design for Manufacturing, 234
 in flow analysis charts, 171
 waste in, 55, 263–264
Transversal order picking, 273, 274f
Tree, critical to quality, 207f, 208f
Tree diagram, 302, 304f
TRIZ (theory of inventive problem solving), 224
“True North” of lean, 80
Tuckman, Bruce, 38–39
Two-card kanban systems, 259

U
Understanding A3 Thinking (Sobek), 307
Unimodal distribution, 188
Unplanned downtime, 360–361
Upside yes/downside no, 22
Uptime, 359, 360, 389
Urgency, creating sense of, 13–15
Useless information, 164, 165f
U-shaped cell layout, 254f

V
Value
 customer (See Customer value)
 definition of, 393
 modeling, 15–16
Value-added, 393. See also Non-value-added
Value stream
 definition of, 172, 393
 first pass yield in, 348
 in overall equipment effectiveness, 364, 365
Value stream mapping, 172–180
 components of, 178f
 of costs, 296–297, 331, 333
 of current state, 176–177
 definition of, 172, 393
 of future state, 177–180
 icons, 179f
 plan, establishing and implementing, 180
 of product or service family, 175–176
 steps in, 175f
 structure of, 177f
Variation data, presenting, 202–214
analysis tools compared with variation and audience types, 204
common cause vs. special causes, 204–205, 205
concentration diagram for, 212–214, 213f, 214f
scatter diagram for, 209–212, 210f, 211f
special causes mapping, 206f
statistical process control charts for, 204–209
Western Electric Rules for, 205–206
Variety reduction, 231–233
Cp and Cpk and, 231–232, 232f
quality loss function and, 232, 233f
tolerance stacking and, 232–233
Virtual teams, 40
Visual devices
for preventing defects, 89f
for providing ease of access, 89f
for sharing work activities, 88f
for showing status, 88f
vital information translated into, 87–89
as voice of operations, 90–92
Visual information boards, 297
Visual management, 73, 393
Visual workplace, 86–108
adherence mechanism, 95–96
at airport, 93f, 94f
andon board, 97, 97f
color coding for inventory locations in warehouse, 101, 101f
definition of, 87
diagonal line identifying missing critical documents, 102, 102f
First-Question-Is-Free Rule, 94–95, 95f
55 standards and discipline, 104–108
floor bordering, 90, 90f
information deficits, problem of, 92–94
kindergarten classroom visual management, 96f
labeling pharmaceuticals at pharmacy, 91, 91f
LOT0 tool, 102, 102f, 103f
to manage addition of inspector and manual cleaning operation, 98, 100f
to manage files at a doctor’s office, 101, 101f
to manage office supply inventory levels, 98, 99f
to manage raw materials in warehouse, 98, 99f
to manage welding operation and steel cutting process, 98, 100f
to manage work-in-process, 98, 98f
production hour-by-hour chart, 104f
safety signs, 102, 103f
for scrap separator, 92f
stacklight in hospitals, 97, 98f
stoplight concept, 96, 97f
tooling sharpening visual workplace, 91, 91f
visual devices, as voice of operations, 90–92
visual devices, vital information translated into, 87–89
Voice of the Customer (VOC)
in A3, 309
for control, ineffectiveness of, 335
in customer satisfaction, 376
in customer value, 289
definition of, 335
in education, 337
equals of, 337f
importance of, 336
measurement systems in, 335–338
PDSA cycle for, 336, 338f
in quality function deployment, 218
Voice of the Process and, 335, 335f
Voice of the Process (VOP)
in quality function deployment, 218
Voice of the Customer and, 335
Voluntary Protection Program (VPP), 23

W
Waiting, 55, 164, 165f
Wait time (delays), 358–359
Warehousing, 272–275
largest gap order picking, 275, 275f
midpoint order picking, 274, 274f
transversal order picking, 273, 274f
Warning poka-yoke, 78
Waste (muda), 52, 53–57, 53f
defective product, making, 56
definition of, 53, 393
elimination, in constancy of purpose, 287–288
inventory, 55–56
knowledge disconnect, 56–57
movement, 56
overprocessing, 55
overproduction, 54
7 Wastes, definition of, 52, 387
transportation, 55, 263–264
waiting, 55
Index

Water spider, 392
Western Electric Rules, 205–206
Wishful thinking, 164, 165f
Womack, James, 261, 354, 376
Work flow, 169
Work flow analysis, 167–186
 definition of, 169
 flow analysis charts, 171–172
 flowcharting, 169–171
 points to remember with, 169
 takt time analysis, 180–186
 value stream mapping, 172–180
Work-in-process (WIP), 108, 126, 130, 347, 393
Work safety, 25–26
Work teams (mini kaizen), 235
World Is Flat, The (Friedman), 373
Wrong tool, 164, 165f

X
X-matrix, 301–302, 303f

Y
Yokoten (information sharing), 41–42
ASQ is...

- More than 90,000 individuals and 700 companies in more than 100 countries
- The world's largest organization dedicated to promoting quality
- A community of professionals striving to bring quality to their work and their lives
- The administrator of the Malcolm Baldrige National Quality Award
- A supporter of quality in all sectors including manufacturing, service, healthcare, government, and education

Visit www.asq.org for more information.

Belong to the Quality Community!

Established in 1946, ASQ is a global community of quality experts in all fields and industries. ASQ is dedicated to the promotion and advancement of quality tools, principles, and practices in the workplace and in the community. The Society also serves as an advocate for quality. Its members have informed and advised the U.S. Congress, government agencies, state legislatures, and other groups and individuals worldwide on quality-related topics.

Vision

By making quality a global priority, an organizational imperative, and a personal ethic, ASQ becomes the community of choice for everyone who seeks quality technology, concepts, or tools to improve themselves and their world.